GCE

Edexcel GCE
Mathematics
Core Mathematics 1 C1 (6663)

J une 2008

Mark Scheme (Final)

General Marking Guidance

- All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.
- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
- There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.
- All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme. Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.
- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- When examiners are in doubt regarding the application of the mark scheme to a candidate's response, the team leader must be consulted.
- Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.
une 2008
6663 Core Mathematics C1
Mark Scheme

Question number	Scheme Marks
1.	$\begin{equation*} 2 x+\frac{5}{3} x^{3}+c \tag{3} \end{equation*}$ M1A1A1
	M1 for an attempt to integrate $x^{n} \rightarrow x^{n+1}$. Can be given if $+c$ is only correct term. $1^{\text {st }}$ A1 for $\frac{5}{3} x^{3}$ or $2 x+c$. Accept $1 \frac{2}{3}$ for $\frac{5}{3}$. Do not accept $\frac{2 x}{1}$ or $2 x^{1}$ as final answer $2^{\text {nd }}$ A1 for as printed (no extra or omitted terms). Accept $1 \frac{2}{3}$ or $1 . \dot{6}$ for $\frac{5}{3}$ but not 1.6 or 1.67 etc Give marks for the first time correct answers are seen e.g. $\frac{5}{3}$ that later becomes 1.67 , the 1.67 is treated as ISW NB M1A0A1 is not possible

Question number	Scheme	Marks
2.	$x\left(x^{2}-9\right)$ or $(x \pm 0)\left(x^{2}-9\right)$ or $(x-3)\left(x^{2}+3 x\right)$ or $(x+3)\left(x^{2}-3 x\right)$ $x(x-3)(x+3)$	B1 M1A1 (3)
	B1 for first factor taken out correctly as indicated in line 1 above. So $x\left(x^{2}+9\right)$ is B0 M1 for attempting to factorise a relevant quadratic. "Ends" correct so e.g. $\left(x^{2}-9\right)=(x \pm p)(x \pm q)$ where $p q=9$ is OK. This mark can be scored for $\left(x^{2}-9\right)=(x+3)(x-3)$ seen anywhere. A1 for a fully correct expression with all 3 factors. Watch out for $-x(3-x)(x+3)$ which scores A1 Treat any working to solve the equation $x^{3}-9 x$ as ISW.	

\begin{tabular}{|c|c|}
\hline Question number \& Scheme \quad Marks

\hline 3 \&

\hline (a)

(b) \& | Allow "stopping at" $(0,10)$ or $(0,7)$ instead of "cutting" |
| :--- |
| $1^{\text {st }} \mathrm{B} 1$ for moving the given curve up. Must be U shaped curve, minimum in first quadrant, not touching x-axis but cutting positive y-axis. Ignore any values on axes. |
| $2^{\text {nd }} \mathrm{B} 1$ for curve cutting y-axis at $(0,10)$. Point 10 (or even $(10,0)$ marked on positive y-axis is OK) |
| $3^{\text {rd }} \mathrm{B} 1$ for minimum indicated at $(7,3)$. Must have both coordinates and in the right order. |
| If the curve flattens out to a turning point like this penalise once at first offence ie $1^{\text {st }} \mathrm{B} 1$ in (a) or in (b) but not in both. |
| this would score B0B1B0 |
| The U shape mark can be awarded if the sides are fairly straight as long as the vertex is rounded. |
| $1^{\text {st }} \mathrm{B} 1$ for U shaped curve, touching positive x-axis and crossing y-axis at $(0,7)$ [condone $(7,0)$ if marked on positive y axis] or 7 marked on y-axis |
| $2^{\text {nd }} \mathrm{B} 1$ for minimum at $(3.5,0)$ or 3.5 or $\frac{7}{2}$ marked on x-axis. Do not condone $(0,3.5)$ here. Redrawing $\mathrm{f}(x)$ will score B1B0 in part (b). |
| Points on sketch override points given in text/table. If coordinates are given elsewhere (text or table) marks can be awarded if they are compatible with the sketch. |

\hline
\end{tabular}

\begin{tabular}{|c|c|}
\hline Question number \& Scheme \({ }^{\text {a }}\) Marks \\
\hline \begin{tabular}{l}
4. (a) \\
(b)
\end{tabular} \& \begin{tabular}{l}
\begin{tabular}{rlrl}
{\(\left[\mathrm{f}^{\prime}(x)\right.\)} \& \(=] 3+3 x^{2}\) \& M1A1 \\
\(3+3 x^{2}\) \& \(=15\) and start to try and simplify \& M1 \\
\(x^{2}\) \& \(=k \rightarrow x=\sqrt{k} \quad\) (ignore \(\pm)\) \& M1 \\
\(x\) \& \(=2\) (ignore \(x=-2)\) \& A1
\end{tabular} \\
\(3+3 x^{2}=15\) and start to try and simplify
\[
x^{2}=k \rightarrow x=\sqrt{k} \quad \text { (ignore } \pm \text {) }
\] \\
\(x=2\) (ignore \(x=-2\))
\end{tabular} \\
\hline (a)

(b) \& | M1 for attempting to differentiate $x^{n} \rightarrow x^{n-1}$. Just one term will do. |
| :--- |
| A poor integration attempt that gives $3 x^{2}+\ldots$ (or similar) scores M0A0 |
| A1 for a fully correct expression. Must be $3 \operatorname{not} 3 x^{0}$. If there is a $+c$ they score A0. |
| $1^{\text {st }} \mathrm{M} 1$ for forming a correct equation and trying to rearrange their $\mathrm{f}^{\prime}(x)=15$ e.g. collect terms. |
| e.g. $3 x^{2}=15-3$ or $1+x^{2}=5$ or even $3+3 x^{2} \rightarrow 3 x^{2}=\frac{15}{3}$ or $3 x^{-1}+3 x^{2}=15 \rightarrow 6 x=15$ |
| (i.e algebra can be awful as long as they try to collect terms in their $\mathrm{f}^{\prime}(x)=15$ equation) |
| $2^{\text {nd }}$ M1 this is dependent upon their $\mathrm{f}^{\prime}(x)$ being of the form $a+b x^{2}$ and |
| attempting to solve $a+b x^{2}=15$ |
| For correct processing leading to $x=\ldots$ |
| Can condone arithmetic slips but processes should be correct so |
| e.g. $\quad 3+3 x^{2}=15 \rightarrow 3 x^{2}=\frac{15}{3} \rightarrow x=\frac{\sqrt{15}}{3}$ scores M1M0A0 |
| $3+3 x^{2}=15 \rightarrow 3 x^{2}=12 \rightarrow x^{2}=9 \rightarrow x=3$ scores M1M0A0 |
| $3+3 x^{2}=15 \rightarrow 3 x^{2}=12 \rightarrow 3 x=\sqrt{12} \rightarrow x=\frac{\sqrt{12}}{3}$ scores M1M0A0 |

\hline
\end{tabular}

\begin{tabular}{|c|c|}
\hline Question number \& Scheme \(\quad\) Marks \\
\hline \begin{tabular}{l}
5. (a) \\
(b) \\
(c)
\end{tabular} \& \\
\hline (a)
(b)

(c) \& | B1 for $a \times 1-3$ or better. Give for $a-3$ in part (a) or if it appears in (b) they must state $x_{2}=a-3$ This must be seen in (a) or before the $a(a-3)-3$ step. |
| :--- |
| M1 for clear show that. Usually for $a(a-3)-3$ but can follow through their x_{2} and even allow $a x_{2}-3$ |
| A1 for correct processing leading to printed answer. Both lines needed and no incorrect working seen. |
| $1^{\text {st }} \mathrm{M} 1$ for attempt to form a correct equation and start to collect terms. It must be a quadratic but need not lead to a $3 T Q=0$ |
| $2^{\text {nd }}$ dM1 This mark is dependent upon the first M1. |
| for attempt to factorize their $3 \mathrm{TQ}=0$ or to solve their $3 \mathrm{TQ}=0$. The " $=0$ "can be implied. |
| $(x \pm p)(x \pm q)=0$, where $p q=10$ or $\left(x \pm \frac{3}{2}\right)^{2} \pm \frac{9}{4}-10=0$ or correct use of quadratic formula with \pm |
| They must have a form that leads directly to 2 values for a. |
| Trial and Improvement that leads to only one answer gets M0 here. |
| A1 for both correct answers. Allow $x=\ldots$ |
| Give $3 / 3$ for correct answers with no working or trial and improvement that gives both values for a |

\hline
\end{tabular}

Question Number	Scheme Marks
$6 .(a)$ (b)	
(a) (b)	B1 must be some ends for curve of correct shape i.e 2 branches of curve, in correct quadrants, of roughly the correct shape and no touching or intersections with axes. Condone up to 2 inward bends but there that are roughly asymptotic. M1 for a straight line cutting the positive y-axis and the negative x-axis. Ignore any values. A1 for $(0,5)$ and $(-2.5,0)$ or points correctly marked on axes. Do not give for values in tables. Condone mixing up (x, y) as (y, x) if one value is zero and other value correct. $1^{\text {st }}$ M1 for attempt to form a suitable equation and multiply by x (at least one of $2 x$ or +5) should be multiplied. $1^{\text {st }}$ A1 for correct 3 TQ - condone missing $=0$ $2^{\text {nd }} \mathrm{M} 1$ for an attempt to solve a relevant 3TQ leading to 2 values for $x=\ldots$ $2^{\text {nd }}$ A1 for both $x=-3$ and 0.5 . T\&I for x values may score $1^{\text {st }}$ M1A1 otherwise no marks unless both values correct. Answer only of $x=-3$ and $x=\frac{1}{2}$ scores $4 / 4$, then apply the scheme for the final M1A1ft $3^{\text {rd }}$ M1 for an attempt to find at least one y value by substituting their x in either $\frac{3}{x}$ or $2 x+5$ $3^{\text {rd }}$ A1ft follow through both their x values, in either equation but the same for each, correct pairings required but can be $x=-3, y=-1$ etc

\begin{tabular}{|c|c|}
\hline Question number \& Scheme Marks \\
\hline \begin{tabular}{l}
8. (a) \\
(b)
\end{tabular} \& \begin{tabular}{l}
[No real roots implies \(b^{2}-4 a c<0\).] \(b^{2}-4 a c=q^{2}-4 \times 2 q \times(-1)\) \\
So \(q^{2}-4 \times 2 q \times(-1)<0\) i.e. \(q^{2}+8 q<0\) \\
(*)
\[
q(q+8)=0 \quad \text { or } \quad(q \pm 4)^{2} \pm 16=0
\] \\
(q) \(=0\) or -8 \\
\(-8<q<0\) or \(q \in(-8,0)\) or \(q<0\) and \(q>-8\)
\end{tabular} \\
\hline (a)

(b) \& | M1 for attempting $b^{2}-4 a c$ with one of b or a correct. <0 not needed for M1 |
| :--- |
| This may be inside a square root. |
| A1cso for simplifying to printed result with no incorrect working or statements seen. |
| Need an intermediate step |
| e.g. $q^{2}--8 q<0$ or $q^{2}-4 \times 2 q \times-1<0$ or $q^{2}-4(2 q)(-1)<0$ or $q^{2}-8 q(-1)<0$ or $q^{2}-8 q \times-1<0$ |
| i.e. must have \times or brackets on the $4 a c$ term |
| <0 must be seen at least one line before the final answer. |
| M1 for factorizing or completing the square or attempting to solve $q^{2} \pm 8 q=0$. A method that would lead to 2 values for q. The "= 0 " may be implied by values appearing later. |
| $1^{\text {st }} \mathrm{A} 1$ for $q=0$ and $q=-8$ |
| $2^{\text {nd }}$ A1 for $-8<q<0$. Can follow through their cvs but must choose "inside" region. |
| $q<0, q>-8$ is A $0, q<0$ or $q>-8$ is A $0,(-8,0)$ on its own is A 0 |
| BUT " $q<0$ and $q>-8$ " is A1 |
| Do not accept a number line for final mark |

\hline
\end{tabular}

\begin{tabular}{|c|c|}
\hline Question number \& Scheme ${ }^{\text {a }}$

\hline 9. (a)
(b)

(c) \& | $\left[\frac{\mathrm{d} y}{\mathrm{~d} x}=\right] 3 k x^{2}-2 x+1$ |
| :--- |
| Gradient of line is $\frac{7}{2}$ |
| When $x=-\frac{1}{2}: \quad 3 k \times\left(\frac{1}{4}\right)-2 \times\left(-\frac{1}{2}\right)+1,=\frac{7}{2}$ $\frac{3 k}{4}=\frac{3}{2} \Rightarrow k=2$ $x=-\frac{1}{2} \Rightarrow y=k \times\left(-\frac{1}{8}\right)-\left(\frac{1}{4}\right)-\frac{1}{2}-5,=-6$ |

\hline (a) \& | M1 for attempting to differentiate $x^{n} \rightarrow x^{n-1}$ (or -5 going to 0 will do) |
| :--- |
| A1 all correct. A " $+c$ " scores A0 |
| B1 for $m=\frac{7}{2}$. Rearranging the line into $y=\frac{7}{2} x+c$ does not score this mark until you are sure they are using $\frac{7}{2}$ as the gradient of the line or state $m=\frac{7}{2}$ |
| $1^{\text {st }}$ M1 for substituting $x=-\frac{1}{2}$ into their $\frac{\mathrm{d} y}{\mathrm{~d} x}$, some correct substitution seen $2^{\text {nd }} \mathrm{M} 1$ for forming a suitable equation in k and attempting to solve leading to $k=\ldots$ |
| Equation must use their $\frac{\mathrm{d} y}{\mathrm{~d} x}$ and their gradient of line. Assuming the gradient is 0 or 7 scores |
| M0 unless they have clearly stated that this is the gradient of the line. |
| A1 \quad for $k=2$ |
| M1 for attempting to substitute their k (however it was found or can still be a letter) and $x=-\frac{1}{2}$ into y (some correct substitution) |
| A1 for - 6 |

\hline
\end{tabular}

Question number	Scheme Marks
11. (a) (b)	$\begin{align*} & \left(x^{2}+3\right)^{2}=x^{4}+3 x^{2}+3 x^{2}+3^{2} \\ & \frac{\left(x^{2}+3\right)^{2}}{x^{2}}=\frac{x^{4}+6 x^{2}+9}{x^{2}}=x^{2}+6+9 x^{-2} \tag{*}\\ & y=\frac{x^{3}}{3}+6 x+\frac{9}{-1} x^{-1}(+c) \tag{2}\\ & 20=\frac{27}{3}+6 \times 3-\frac{9}{3}+c \\ & c=-4 \\ & {[y=] \frac{x^{3}}{3}+6 x-9 x^{-1}-4} \end{align*}$
(a) (b)	M1 for attempting to expand $\left(x^{2}+3\right)^{2}$ and having at least 3(out of the 4) correct terms. A1 at least this should be seen and no incorrect working seen. If they never write $\frac{9}{x^{2}}$ as $9 x^{-2}$ they score A0. $1^{\text {st }}$ M1 for some correct integration, one correct x term as printed or better Trying $\frac{\int u}{\int v}$ loses the first M mark but could pick up the second. $1^{\text {st }}$ A1 for two correct x terms, un-simplified, as printed or better $2^{\text {nd }}$ A1 for a fully correct expression. Terms need not be simplified and $+c$ is not required. No $+c$ loses the next 3 marks $2^{\text {nd }} \mathrm{M} 1$ for using $x=3$ and $y=20$ in their expression for $\mathrm{f}(x)\left[\neq \frac{\mathrm{d} y}{\mathrm{~d} x}\right]$ to form a linear equation for c $3^{\text {rd }} \mathrm{A} 1$ for $c=-4$ $4^{\text {th }}$ A1ft for an expression for y with simplified x terms: $\frac{9}{x}$ for $9 x^{-1}$ is OK . Condone missing " $y=$ " Follow through their numerical value of c only.

