

Mark Scheme (Results)

June 2011

GCE Core Mathematics C1 (6663) Paper 1

ALWAYS LEARNING

Edexcel is one of the leading examining and awarding bodies in the UK and throughout the world. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers.

Through a network of UK and overseas offices, Edexcel's centres receive the support they need to help them deliver their education and training programmes to learners.

For further information, please call our GCE line on 0844 576 0025, our GCSE team on 0844 576 0027, or visit our website at <u>www.edexcel.com</u>.

If you have any subject specific questions about the content of this Examiners' Report that require the help of a subject specialist, you may find our **Ask The Expert** email service helpful.

Ask The Expert can be accessed online at the following link: http://www.edexcel.com/Aboutus/contact-us/

June 2011 Publications Code UA027654 All the material in this publication is copyright © Edexcel Ltd 2011

EDEXCEL GCE MATHEMATICS

General Instructions for Marking

- 1. The total number of marks for the paper is 75.
- 2. The Edexcel Mathematics mark schemes use the following types of marks:
 - M marks: method marks are awarded for 'knowing a method and attempting to apply it', unless otherwise indicated.
 - A marks: Accuracy marks can only be awarded if the relevant method (M) marks have been earned.
 - **B** marks are unconditional accuracy marks (independent of M marks)
 - Marks should not be subdivided.
- 3. Abbreviations

These are some of the traditional marking abbreviations that will appear in the mark schemes and can be used if you are using the annotation facility on ePEN.

- bod benefit of doubt
- ft follow through
- the symbol $\sqrt[4]{}$ will be used for correct ft
- cao correct answer only
- cso correct solution only. There must be no errors in this part of the question to obtain this mark
- isw ignore subsequent working
- awrt answers which round to
- SC: special case
- oe or equivalent (and appropriate)
- dep dependent
- indep independent
- dp decimal places
- sf significant figures
- ***** The answer is printed on the paper
- The second mark is dependent on gaining the first mark

June 2011	
Core Mathematics C1	6663
Mark Scheme	

Question Number	Scheme	Marks
1. (a)	5 (or ±5)	B1 (1)
(b)	$25^{-\frac{3}{2}} = \frac{1}{25^{\frac{3}{2}}} \text{ or } 25^{\frac{3}{2}} = 125 \text{ or better}$ $\frac{1}{125} \text{ or } 0.008 \qquad (\text{or } \pm \frac{1}{125})$	M1
	$\frac{1}{125}$ or 0.008 (or $\pm \frac{1}{125}$)	A1
		(2) 3
	Notes	
	(a) Give B1 for 5 or ± 5 Anything else is B0 (including just -5)	1
	(b) M: Requires reciprocal OR $25^{\frac{3}{2}} = 125$ Accept $\frac{1}{5^3}, \frac{1}{\sqrt{15625}}, \frac{1}{25\times5}, \frac{1}{25\sqrt{25}}, \frac{1}{\sqrt{25^3}}$ for M1	
	Correct answer with no working (or notation errors in working) scores both mark M1A0 for - $\frac{1}{125}$ without + $\frac{1}{125}$	xs i.e. M1 A1

Question Number	Scheme	Marks
2. (a)	$\frac{dy}{dx} = 10x^4 - 3x^{-4} \qquad \text{or} \qquad 10x^4 - \frac{3}{x^4}$	M1 A1 A1 (3)
(b)	$\left(\int = \right) \frac{2x^6}{6} + 7x + \frac{x^{-2}}{-2} = \frac{x^6}{3} + 7x - \frac{x^{-2}}{2} + C$	M1 A1 A1 B1 (4) 7
	Notes (a) M1: Attempt to differentiate $x^n \to x^{n-1}$ (for any of the 3 terms) i.e. ax^4 or ax^{-4} , where <i>a</i> is any non-zero constant or the 7 differentiated to give 0 is sufficient evidence for M1 1 st A1: One correct (non-zero) term, possibly unsimplified. 2 nd A1: Fully correct simplified answer. (b) M1: Attempt to integrate $x^n \to x^{n+1}$ (i.e. ax^6 or ax or ax^{-2} , where <i>a</i> is any non-zero constant). 1 st A1: Two correct terms, possibly unsimplified. 2 nd A1: All three terms correct and simplified . Allow correct equivalents to printed answer, e.g. $\frac{x^6}{3} + 7x - \frac{1}{2x^2}$ or $\frac{1}{3}$ Allow $\frac{1x^6}{3}$ or $7x^1$ B1: + <i>C</i> appearing at any stage in part (b) (independent of previous work	

Question Number	Scheme	Marks
3.	Mid-point of PQ is (4, 3)	B1
	PQ: $m = \frac{0-6}{9-(-1)}, \ \left(=-\frac{3}{5}\right)$	B1
	Gradient perpendicular to $PQ = -\frac{1}{m} (=\frac{5}{3})$	M1
	$y-3=\frac{5}{3}(x-4)$	M1
	5x-3y-11=0 or $3y-5x+11=0$ or multiples e.g. $10x-6y-22=0$	A1 (5) 5
	Notes	
	B1: correct midpoint. B1: correct numerical expression for gradient – need not be simplified 1 st M: Negative reciprocal of their numerical value for m 2 nd M: Equation of a line through their (4, 3) with any gradient except (If the 4 and 3 are the wrong way round the 2 nd M mark can still be given formula (e.g. $y - y_1 = m(x - x_1)$) is seen, otherwise M0. If (4, 3) is substituted into $y = mx + c$ to find c , the 2 nd M mark is for at A1: Requires integer form with an = zero (see examples above)	n if a correct

Question Number		Scheme	Marks
4.	Either	Or	
	$y^2 = 4 - 4x + x^2$	$x^2 = 4 - 4y + y^2$	M1
	$4(4-4x+x^{2})-x^{2} = 11$ or $4(2-x)^{2}-x^{2} = 11$	$4y^{2} - (4 - 4y + y^{2}) = 11$ or $4y^{2} - (2 - y)^{2} = 11$	M1
	$3x^2 - 16x + 5 = 0$	$3y^2 + 4y - 15 = 0$ Correct 3 terms	A1
	(3x-1)(x-5) = 0, x = 1	$(3y-5)(y+3) = 0, y = \dots$	M1
	$x = \frac{1}{3} x = 5$	$y = \frac{5}{3} y = -3$	A1
	$y = \frac{5}{3} y = -3$	$x = \frac{1}{3} x = 5$	M1 A1
			(7) 7
	1 st M: Squaring to give 3	Notes or 4 terms (need a middle term)	
		quadratic in one variable (may have just two terms	5)
	3 rd M: Attempt to solve a		
	4^{th} M: Attempt to find at least one <i>y</i> value (or <i>x</i> value). (The second variable)		
	This will be by substitution or by starting again.		
	If y solutions are given as x values, or vice-versa, penalise accuracy, so that it is possible to score M1 M1A1 M1 A0 M1 A0.		
	"Non-algebraic" solutions:		
	No working, and only one correct solution pair found (e.g. $x = 5$, $y = -3$):		
	M0 M0 A0 M1 A0 M1 A0 No working, and both correct solution pairs found, but not demonstrated: M0 M0 A0 M1 A1 M1 A1		
	Both correct solution pairs review)		

Question Number	Scheme	Marks
5. (a)	$(a_2 =) 5k + 3$	B1 (1)
(b)	$(a_3 =) 5(5k+3)+3$ = 25k+18 (*)	M1 A1 cso (2)
(c) (i)	$a_4 = 5(25k+18) + 3 (= 125k+93)$	M1
(ii)	$\sum_{r=1}^{4} a_r = k + (5k + 3) + (25k + 18) + (125k + 93)$ = 156k + 114 = 6(26k + 19) (or explain each term is divisible by 6)	$ \begin{array}{c} $
	(a) $5k + 3$ must be seen in (a) to gain the mark (b) 1 st M: Substitutes their a_2 into $5a_2+3$ - note the answer is given so w be seen. (c) 1 st M1: Substitutes their a_3 into $5a_3+3$ or uses $125k+93$ 2^{nd} M1: for their sum $k + a_2 + a_3 + a_4$ - must see evidence of four tensions and must not be sum of AP 1^{st} A1: All correct so far 2^{nd} A1ft: Limited ft – previous answer must be divisible by 6 (eg $156k + 42$). This is dependent on second M mark in (c) Allow $\frac{156k+114}{6} = 26k+19$ without explanation. No conclusion is needed.	

Question Number	Scheme	Marks	
6.	1 1		
(a)	$p = \frac{1}{2}, q = 2$ or $6x^{\frac{1}{2}}, 3x^{2}$	B1, B1	
	$\frac{3}{2}$	(2)	
(b)	$\begin{bmatrix} \frac{6x^{\frac{3}{2}}}{\binom{3}{2}} + \frac{3x^{3}}{3} & \left(= 4x^{\frac{3}{2}} + x^{3} \right) \end{bmatrix}$	M1 A1ft	
	$x = 4, y = 90: 32 + 64 + C = 90 \implies C = -6$ $y = 4x^{\frac{3}{2}} + x^{3} + "their - 6"$	M1 A1	
	$y = 4x^{\frac{3}{2}} + x^{3} + "their - 6"$	A1	
		(5) 7	
	Notes		
	(a) Accept any equivalent answers, e.g. $p = 0.5$, $q = 4/2$	•	
	(b) 1 st M: Attempt to integrate $x^n \rightarrow x^{n+1}$ (for either term)		
	1 st A: ft their p and q, but terms need not be simplified (+C not require this mark)	ed for	
	2^{nd} M: Using $x = 4$ and $y = 90$ to form an equation in C.		
	2^{nd} A: cao 3^{rd} A: answer as shown with simplified correct coefficients and powers – but follow		
	through their value for C	s – but tonow	
	If there is a 'restart' in part (b) it can be marked independently of part (a), part (a) cannot be scored for work seen in (b).	but marks for	
	Numerator and denominator integrated separately: First M mark cannot be awarded so only mark available is second M mar marks.	k. So 1 out of 5	

Question Number	Scheme	Marks
7. (a)	Discriminant: $b^2 - 4ac = (k+3)^2 - 4k$ or equivalent	M1 A1 (2)
(b)	$(k+3)^{2} - 4k = k^{2} + 2k + 9 = (k+1)^{2} + 8$	M1 A1 (2)
(c)	For real roots, $b^2 - 4ac \ge 0$ or $b^2 - 4ac > 0$ or $(k+1)^2 + 8 > 0$ $(k+1)^2 \ge 0$ for all k, so $b^2 - 4ac > 0$, so roots are real for all k (or equiv.)	M1 A1 cso
		(2) 6
	Notes (a) M1: attempt to find discriminant – substitution is required If formula $b^2 - 4ac$ is seen at least 2 of <i>a</i> , <i>b</i> and <i>c</i> must be correct If formula $b^2 - 4ac$ is not seen all 3 of <i>a</i> , <i>b</i> and <i>c</i> must be correct Use of $b^2 + 4ac$ is M0 A1: correct unsimplified (b) M1: Attempt at completion of square (see earlier notes) A1: both correct (no ft for this mark) (c) M1: States condition as on scheme or attempts to explain that their $(k+1)^2 + 8$ is greater than 0 A1: The final mark (A1cso) requires $(k+1)^2 \ge 0$ and conclusion. W will allow $(k+1)^2 > 0$ (or word positive) also allow $b^2 - 4ac \ge 0$	

Question	S.	home	Marka
Number	50	heme	Marks
8. (a)		Shape \bigvee through (0, 0) (3, 0) (1.5, -1)	B1 B1 B1 (3)
(b)	21y	Shape 🦳	B1
		(0, 0) and (6, 0) (3, 1)	B1 B1 (3)
(c)		Shape \bigcup , <u>not</u> through $(0, 0)$ Minimum in 4 th quadrant (-p, 0) and $(6 - p, 0)(3 - p, -1)$	M1 A1 B1 B1 (4) 10
	<u> </u>	Notes	
	 B1: (3,1) shown (c) M1: U shaped parabola not thrown and the shaped parabola not the shaped parabola not the shaped parabola not the shape	<i>x</i> axis 3/2, -1) position labelled) and (6,0) stated or 6 labelled o ough origin lepends on M mark having been given) n on <i>x</i> axis n it is possible to give M1A1B0B0 even	

Question Number	Scheme	Marks
9. (a)	Series has 50 terms $S = \frac{1}{2}(50)(2+100) = 2550 \text{ or } S = \frac{1}{2}(50)(4+49\times2) = 2550$	B1 M1 A1 (3)
(b) (i)	$\frac{100}{k}$	B1
(ii)	Sum: $\frac{1}{2} \left(\frac{100}{k} \right) (k+100)$ or $\frac{1}{2} \left(\frac{100}{k} \right) \left(2k + \left(\frac{100}{k} - 1 \right) k \right)$	M1 A1
	$= 50 + \frac{5000}{k} $ (*)	A1 cso (4)
(c)	$50^{\text{th}} \text{ term} = a + (n-1)d$ = $(2k+1) + 49"(2k+3)"$ = $100k + 148$ Or $2k + 49(2k) + 1 + 49(3)$ = $100k + 148$	M1 A1 (2) 9
	 (a) B for seeing attempt to use n = 50 or n = 50 stated M for attempt to use ¹/₂n(a+l) or ¹/₂n(2a+(n-1)d) with a = 2 and values for other variables (Using n = 100 may earn B0 M1A0) (b) M for use of a = k and d = k or l = 100 with their value for n, could be r even letter n in correct formula for sum. A1: Correct formula with n = 100/k A1: NB Answer is printed – so no slips should have appeared in working (c) M for use of formula a + 49d with a = 2k + 1 and with d obtained from d terms A1: Requires this simplified answer 	numerical or

Question Number	Scheme	Ма	rks
10.			
(a)	Shape (cubic in this orientation)	B1	
	Touching x -axis at -3	B1	
	Crossing at –1 on <i>x</i> -axis	B1	
	Intersection at 9 on y-axis	B1	
			(4)
	$(x + 1)(x^2 + 6x + 0) = x^3 + 7x^2 + 15x + 0$ or equiv. (resplit)		
(b)	$y = (x+1)(x^2+6x+9) = x^3+7x^2+15x+9$ or equiv. (possibly	B1	
	unsimplified) Differentiates their polynomial correctly – may be unsimplified	M1	
	$\frac{dy}{dx} = 3x^2 + 14x + 15$ (*)	A1 cso	
			(3)
	At $x = -5$: $\frac{dy}{dx} = 75 - 70 + 15 = 20$	B1	
(c)	At $x = -5$. $\frac{1}{dx} = 75 - 70 + 15 - 20$	DI	
	At $x = -5$: $y = -16$	B1	
	y - ("-16") = "20"(x - (-5)) or $y = "20x" + c$ with (-5, -"16")	M1	
	used to find c		
	y = 20x + 84	A1	
(-)			(4)
(d)	Parallel: $3x^2 + 14x + 15 = "20"$	M1	
	(3x-1)(x+5) = 0 $x =$	M1	
	$x = \frac{1}{3}$	A1	
	3		(2)
			(3) 14
	Notes		17
	(a) Crossing at -3 is B0. Touching at -1 is B0	I	
	(b) M: This needs to be correct differentiation here		
	A1: Fully correct simplified answer.		
	(c) M: If the -5 and "-16" are the wrong way round or $-$ omitted the M mark c	an still be giv	ven
	if a correct formula is seen, (e.g. $y - y_1 = m(x - x_1)$) otherwise M0.	1	
	<i>m</i> should be numerical and not 0 or infinity and should not have involve reciprocal.	d negative	
	(d) 1^{st} M: Putting the derivative expression equal to their value for gradient	ent	
	2^{nd} M: Attempt to solve quadratic (see notes) This may be implied by	y correct	
	answer.		

Further copies of this publication are available from Edexcel Publications, Adamsway, Mansfield, Notts, NG18 4FN

Telephone 01623 467467 Fax 01623 450481 Email <u>publication.orders@edexcel.com</u> Order Code UA027654 June 2011

For more information on Edexcel qualifications, please visit <u>www.edexcel.com/quals</u>

Pearson Education Limited. Registered company number 872828 with its registered office at Edinburgh Gate, Harlow, Essex CM20 2JE

