

Mark Scheme (Results) Summer 2007

GCE

GCE Mathematics

Core Mathematics C3 (6665)

June 2007 6665 Core Mathematics C3 Mark Scheme

~	estion mber	Scheme	Marks
1.	(<i>a</i>)	$\ln 3x = \ln 6$ or $\ln x = \ln \left(\frac{6}{3}\right)$ [implied by 0.69] or $\ln \left(\frac{3x}{6}\right) = 0$	M1
		x = 2 (only this answer)	A1 (cso) (2)
	<i>(b)</i>	$(e^{x})^{2} - 4e^{x} + 3 = 0$ (any 3 term form)	M1
		$(e^x - 3)(e^x - 1) = 0$	
		$e^x = 3$ or $e^x = 1$ Solving quadratic	M1 dep
		$(e^{x})^{2} - 4e^{x} + 3 = 0$ (any 3 term form) $(e^{x} - 3)(e^{x} - 1) = 0$ $e^{x} = 3$ or $e^{x} = 1$ Solving quadratic $x = \ln 3$, $x = 0$ (or ln 1)	M1 A1 (4)
			(6 marks)

Notes: (a) Answer x = 2 with no working or no incorrect working seen: M1A1 Beware x = 2 from $\ln x = \frac{\ln 6}{\ln 3} = \ln 2$ M0A0 $\ln x = \ln 6 - \ln 3 \implies x = e^{(\ln 6 - \ln 3)}$ allow M1, x = 2 (no wrong working) A1

(b) 1^{st} M1 for attempting to multiply through by e^x : Allow y, X, even x, for e^x Be generous for M1 e.g $e^{2x} + 3 = 4$, $e^{x^2} + 3 = 4e^x$, $3 y^2 + 1 = 12y$ (from $3 e^{-x} = \frac{1}{3e^x}$), $e^x + 3 = 4e^x$

 2^{nd} M1 is for solving quadratic (may be by formula or completing the square) as far as getting two values for e^x or y or X etc

 3^{rd} M1 is for converting their answer(s) of the form $e^x = k$ to x = lnk (must be exact) A1 is for ln3 **and** ln1 or 0 (Both required and no further solutions)

2. (<i>a</i>)	$2x^{2} + 3x - 2 = (2x - 1)(x + 2)$ at any stage	B1	
	$f(x) = \frac{(2x+3)(2x-1) - (9+2x)}{(2x-1)(x+2)}$ f.t. on error in denominator factors (need not be single fraction)	M1, A1√	
	Simplifying numerator to quadratic form $\left[= \frac{4x^2 + 4x - 3 - 9 - 2x}{(2x - 1)(x + 2)} \right]$	M1	
	Correct numerator $= \frac{4x^2 + 2x - 12}{\left[(2x - 1)(x + 2)\right]}$	A1	
	Factorising numerator, with a denominator $=\frac{2(2x-3)(x+2)}{(2x-1)(x+2)}$ o.e.	M1	
	$\begin{bmatrix} = \frac{2(2x-3)}{2x-1} \end{bmatrix} = \frac{4x-6}{2x-1} (\clubsuit)$	A1 cso (7)	
Alt.(<i>a</i>)	$2x^2 + 3x - 2 = (2x - 1)(x + 2)$ at any stage B1		
- 111.(<i>u</i>)	$f(x) = \frac{(2x+3)(2x^2+3x-2) - (9+2x)(x+2)}{(x+2)(2x^2+3x-2)}$ M1A1 f.t.		
	$=\frac{4x^3+10x^2-8x-24}{(x+2)(2x^2+3x-2)}$		
	$= \frac{2(x+2)(2x^2+x-6)}{(x+2)(2x^2+3x-2)} \text{ or } \frac{2(2x-3)(x^2+4x+4)}{(x+2)(2x^2+3x+2)} \text{ o.e.}$		
	Any one linear factor \times quadratic factor in numerator M1, A1		
	$= \frac{2(x+2)(x+2)(2x-3)}{(x+2)(2x^2+3x-2)} \text{o.e.} $ M1		
	$=\frac{2(2x-3)}{2x-1} \qquad \frac{4x-6}{2x-1} \qquad (\clubsuit) $ A1		
(b)	Complete method for f'(x); e.g f'(x) = $\frac{(2x-1) \times 4 - (4x-6) \times 2}{(2x-1)^2}$ o.e	M1 A1	
	$=\frac{8}{(2x-1)^2}$ or $8(2x-1)^{-2}$	A1 (3)	
	Not treating f^{-1} (for f') as misread	(10 marks)	
Notes: (a) 1^{st} M1 in either version is for correct method			
1 st A1 Allow $\frac{2x+3(2x-1)-(9+2x)}{(2x-1)(x+2)}$ or $\frac{(2x+3)(2x-1)-9+2x}{(2x-1)(x+2)}$ or $\frac{2x+3(2x-1)-9+2x}{(2x-1)(x+2)}$ (fractions)			
2 nd M1 in (main a) is for forming 3 term quadratic in numerator			
3 rd M1 is for factorising their quadratic (usual rules); factor of 2 need not be extracted (*) A1 is given answer so is cso			
Alt (a) 3 rd M1 is for factorising resulting quadratic			
Notice that B1 likely to be scored very late but on ePen scored first			
(b) SC: For M allow \pm given expression or one error in product rule Alt: Attempt at $f(x) = 2 - 4(2x-1)^{-1}$ and diff. M1; $k(2x-1)^{-2}$ A1; A1 as above			
Alt: Attempt at $f(x) = 2 - 4(2x - 1)$ and diff. M1? $k(2x - 1)$ A1? A1 as above Accept $8(4x^2 - 4x + 1)^{-2}$. Differentiating original function – mark as scheme.			
	Accept $O(4x - 4x + 1)$. Differentiating original function – mark as set		

Question Number	Scheme	Marks
3. (<i>a</i>)	$\frac{\mathrm{d}y}{\mathrm{d}x} = x^2 \mathrm{e}^x + 2x \mathrm{e}^x$	M1,A1,A1 (3)
(b)	If $\frac{dy}{dx} = 0$, $e^{x}(x^{2} + 2x) = 0$ setting $(a) = 0$	M1
(c)	Scheme $\frac{dy}{dx} = x^{2}e^{x} + 2xe^{x}$ If $\frac{dy}{dx} = 0$, $e^{x}(x^{2} + 2x) = 0$ setting $(a) = 0$ $[e^{x} \neq 0]$ $x(x + 2) = 0$ (x = 0) or $x = -2x = 0, y = 0 and x = -2, y = 4e^{-2} (= 0.54)\frac{d^{2}y}{dx^{2}} = x^{2}e^{x} + 2xe^{x} + 2xe^{x} + 2e^{x} [=(x^{2} + 4x + 2)e^{x}]$	$ \begin{array}{c} A1 \\ A1 (3) \\ M1, A1 (2) \end{array} $
(<i>d</i>)	$x = 0, \frac{d^2 y}{dx^2} > 0 (=2) \qquad x = -2, \frac{d^2 y}{dx^2} < 0 [= -2e^{-2} (= -0.270)]$ M1: Evaluate, or state sign of, candidate's (c) for at least one of candidate's <i>x</i> value(s) from (b)	M1
	∴minimum ∴maximum	A1 (cso) (2)
Alt.(d)	For M1: Evaluate, or state sign of, $\frac{dy}{dx}$ at two appropriate values – on either side of at least one of their answers from (b) or Evaluate y at two appropriate values – on either side of at least one of their answers from (b) or Sketch curve	
	·	(10 marks)

- Notes: (a) Generous M for attempt at f(x)g'(x) + f'(x)g(x) 1^{st} A1 for one correct, 2^{nd} A1 for the other correct.
 - Note that $x^2 e^x$ on its own scores no marks (b) 1^{st} A1 (x = 0) may be omitted, but for 2^{nd} A1 both sets of coordinates needed ; f.t only on candidate's x = -2
 - (c) M1 requires complete method for candidate's (a), result may be unsimplified for A1
 - (d) A1 is cso; x = 0, min, and x = -2, max and no incorrect working seen., or (in alternative) sign of $\frac{dy}{dx}$ either side correct, or values of y appropriate to t.p.

Need only consider the quadratic, as may assume $e^x > 0$.

If all marks gained in (a) and (c), and correct x values, give M1A1 for correct statements with no working

Question Number	Scheme		Mark	S
4. (<i>a</i>)	$x^{2}(3-x) - 1 = 0$ o.e. (e.g. $x^{2}(-x+3) = 1$)		M1	
	$x^{2}(3-x)-1=0$ o.e. (e.g. $x^{2}(-x+3)=1$) $x=\sqrt{\frac{1}{3-x}}$ (*)		A1 (cso)	(2)
	Note(*), answer is given: need to see appropriate wo [Reverse process: Squaring and non-fractional equation			
(b)	$x_2 = 0.6455$, $x_3 = 0.6517$, $x_4 = 0.6526$ 1 st B1 is for one correct, 2 nd B1 for other two correct If all three are to greater accuracy, award B0 B1		B1; B1	(2)
(c)	Choose values in interval (0.6525, 0.6535) or tighter and evaluate both $f(0.6525) = -0.0005$ (372 $f(0.6535) = 0.002$ (101		M1	
	At least one correct "up to bracket", i.e0.0005 or		A1	
	Change of sign , $\therefore x = 0.653$ is a root (correct) to 3 d. Beguires both correct "up to breaket" and conclusion		A1	(3)
	Requires both correct "up to bracket" and conclusion	as above	(7 ma	arks)
Alt (i)	Continued iterations at least as far as x_6	M1		
	$x_5 = 0.6527, x_6 = 0.6527, x_{7=} \dots$ two correct to at least 4 s.f. A1 Conclusion : Two values correct to 4 d.p., so 0.653 is root to 3 d.p. A1			
Alt (ii)	Conclusion : Two values correct to 4 d.p., so 0.055 is root to 5 d.p.A1If use $g(0.6525) = 0.6527> 0.6525$ and $g(0.6535) = 0.6528< 0.6535$ M1A1Conclusion : Both results correct, so 0.653 is root to 3 d.p.A1			
5. (<i>a</i>)	(x-3)		M1 A1	(2)
<i>(b)</i>	$[f(2) = \ln(2x2 - 1) \qquad fg(4) = \ln(4 - 1)]$ y = ln(2x-1) $\Rightarrow e^{y} = 2x - 1 \text{or} e^{x} = 2y - 1$	$= \ln 3$	M1, A1	(2)
(0)	$f^{-1}(x) = \frac{1}{2}(e^x + 1)$ Allow $y = \frac{1}{2}(e^x + 1)$		A1	
	Domain $x \in \Re$ [Allow \Re , all reals, $(-\infty, \infty)$] independent	B1	(4)
(c)	y 🔪 🔰	Shape, and x-axis should appear to be asymptote	B1	
	$\frac{2}{3}$ x = 3	Equation x = 3 needed, may see in diagram (ignore others)	B1 ind.	
	$ \xrightarrow{0} \xrightarrow{3} \xrightarrow{x} $	Intercept $(0, \frac{2}{3})$ no	D4 · 1	
		other; accept $y = \frac{2}{3}$ (0.67) or on graph	B1 ind	(3)
(d) $\begin{vmatrix} \frac{2}{x-3} = 3 \\ \frac{2}{x-3} = -3 \end{vmatrix}$ $\Rightarrow x = 3\frac{2}{3}$ or exact equiv. $\frac{2}{x-3} = -3$, $\Rightarrow x = 2\frac{1}{3}$ or exact equiv. Note: $2 = 3(x+3)$ or $2 = 3(-x-3)$ o.e. is M0A0			B1	
			M1, A1	(3)
A 1/	Alt: Squaring to quadratic $(9x^2 - 54x + 77 = 0)$ and solving M1; B1A1		(12 ma	arks)

6. (<i>a</i>	Complete method for R: e.g. $R \cos \alpha = 3$, $R \sin \alpha = 2$, $R = \sqrt{(3^2 + 2^2)}$	M1
	$R = \sqrt{13}$ or 3.61 (or more accurate)	A1
	Complete method for $\tan \alpha = \frac{2}{3}$ [Allow $\tan \alpha = \frac{3}{2}$]	M1
	$\alpha = 0.588$ (Allow 33.7°)	A1 (4)
(1) Greatest value = $\left(\sqrt{13}\right)^4 = 169$	M1, A1 (2)
(0) $\sin(x+0.588) = \frac{1}{\sqrt{13}}$ (= 0.27735) $\sin(x + \text{their } \alpha) = \frac{1}{\text{their } R}$ (x + 0.588) = 0.281(03 or 16.1° (x + 0.588) = $\pi - 0.28103$	M1
	$(x + 0.588) = 0.281(03 \text{ or } 16.1^{\circ})$	A1
	(x + 0.588) = $\pi - 0.28103$ Must be π - their 0.281 or 180° - their 16.1°	M1
	or $(x + 0.588)$ = $2\pi + 0.28103$ Must be $2\pi +$ their 0.281 or $360^{\circ} +$ their 16.1°	M1
	x = 2.273 or $x = 5.976$ (awrt) Both (radians only)	A1 (5)
	If 0.281 or 16.1° not seen, correct answers imply this A mark	(11 marks)
Notes: (a) 1^{st} M1 on Epen for correct method for R, even if found second 2^{nd} M1 for correct method for $\tan \alpha$ No working at all: M1A1 for $\sqrt{13}$, M1A1 for 0.588 or 33.7°. N.B. Rcos $\alpha = 2$, Rsin $\alpha = 3$ used, can still score M1A1 for R, but loses the A mark for α .		

- $\cos \alpha = 3$, $\sin \alpha = 2$: apply the same marking.
- (b) M1 for realising $sin(x + \alpha) = \pm 1$, so finding R⁴.
- (c) Working in mixed degrees/rads : first two marks available Working consistently in degrees: Possible to score first 4 marks [Degree answers, just for reference, Only are 130.2° and 342.4°] Third M1 can be gained for candidate's 0.281 – candidate's 0.588 + 2π or equiv. in degrees One of the answers correct in radians or degrees implies the corresponding M mark.

Alt: (c)	(i) Squaring to form quadratic in $\sin x$ or $\cos x$	M1
	$[13\cos^2 x - 4\cos x - 8 = 0, 13\sin^2 x - 6\sin x - 3 = 0]$	
	Correct values for $\cos x = 0.953, -0.646$; or $\sin x = 0.767, 2.27$ awrt	A1
	For any one value of cos x or sinx, correct method for two values of x	M1
	x = 2.273 or $x = 5.976$ (awrt) Both seen anywhere	A1
	Checking other values (0.307, 4.011 or 0.869, 3.449) and discarding	M1

(ii) Squaring and forming equation of form $a \cos 2x + b \sin 2x = c$ $9 \sin^2 x + 4 \cos^2 x + 12 \sin 2x = 1 \implies 12 \sin 2x + 5 \cos 2x = 11$ Setting up to solve using R formula e.g. $\sqrt{13} \cos(2x - 1.176) = 11$ M1

$$(2x-1.176) = \cos^{-1}\left(\frac{11}{\sqrt{13}}\right) = 0.562(0...)$$
 (\$\alpha\$) A1

$$(2x-1.176) = 2\pi - \alpha, \ 2\pi + \alpha, \dots$$
 M1

x = 2.273 or x = 5.976 (awrt) Both seen anywhere A1 Checking other values and discarding M1

Question Number	Scheme	Marks
7. (<i>a</i>)	$\frac{\sin\theta}{\cos\theta} + \frac{\cos\theta}{\sin\theta} = \frac{\sin^2\theta + \cos^2\theta}{\cos\theta\sin\theta}$ M1 Use of common denominator to obtain single fraction	M1
	$= \frac{1}{\cos\theta\sin\theta}$ M1 Use of appropriate trig identity (in this case $\sin^2\theta + \cos^2\theta = 1$)	M1
	$= \frac{1}{\frac{1}{2}\sin 2\theta}$ Use of $\sin 2\theta = 2\sin\theta\cos\theta$ = $2\csc 2\theta$ (*)	M1 A1 cso (4)
Alt.(<i>a</i>)	$\frac{\sin\theta}{\cos\theta} + \frac{\cos\theta}{\sin\theta} = \tan\theta + \frac{1}{\tan\theta} = \frac{\tan^2\theta + 1}{\tan\theta} \qquad M1$	
	$=\frac{\sec^2\theta}{\tan\theta}$ M1	
	$= \frac{1}{\cos\theta\sin\theta} = \frac{1}{\frac{1}{2}\sin 2\theta} \qquad M1$	
<i>(b)</i>	$= 2 \operatorname{cosec} 2\theta (\texttt{*}) (\operatorname{cso}) A1$ If show two expressions are equal, need conclusion such as QED, tick, true.	
	$\begin{array}{c} y \\ 2 \\ 2 \\ \end{array} $ Shape (May be translated but need to see 4"sections")	B1
	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	B1 dep. (2)
(c)	$2\csc 2\theta = 3$ $\sin 2\theta = \frac{2}{3}$ Allow $\frac{2}{\sin 2\theta} = 3$ [M1 for equation in $\sin 2\theta$]	M1, A1
	$(2\theta) = [41.810^{\circ}, 138.189^{\circ}; 401.810^{\circ}, 498.189^{\circ}]$ 1st M1 for α , 180 – α ; 2 nd M1 adding 360° to at least one of values $\theta = 20.9^{\circ}, 69.1^{\circ}, 200.9^{\circ}, 249.1^{\circ}$ (1 d.p.) awrt	M1; M1
Note	1 st A1 for any two correct, 2 nd A1 for other two Extra solutions in range lose final A1 only SC: Final 4 marks: $\theta = 20.9^\circ$, after M0M0 is B1; record as M0M0A1A0	A1,A1 (6)
Alt.(c)	$\tan \theta + \frac{1}{\tan \theta} = 3$ and form quadratic, $\tan^2 \theta - 3 \tan \theta + 1 = 0$ M1, A1 (M1 for attempt to multiply through by $\tan \theta$, A1 for correct equation above)	
	Solving quadratic $[\tan \theta = \frac{3 \pm \sqrt{5}}{2} = 2.618 \text{ or } = 0.3819]$ M1	
	$\theta = 69.1^{\circ}, 249.1^{\circ} \qquad \theta = 20.9^{\circ}, 200.9^{\circ} \qquad (1 \text{ d.p.}) \text{M1, A1, A1}$ (M1 is for one use of $180^{\circ} + \alpha^{\circ}$, A1A1 as for main scheme)	(12 marks)

Question Number	Scheme	Marks
8. (<i>a</i>)	$D = 10, t = 5, x = 10e^{-\frac{1}{8} \times 5}$ = 5.353 awrt	M1 A1 (2)
(b)	$D = 10 + 10e^{-\frac{5}{8}}, t = 1,$ $x = 15.3526 \times e^{-\frac{1}{8}}$ x = 13.549 (*)	M1 A1 cso (2)
Alt.(b)	$x = 10e^{-\frac{1}{8}\times 6} + 10e^{-\frac{1}{8}\times 1}$ M1 $x = 13.549$ (*) A1 cso	
(c)	$15.3526e^{-\frac{1}{8}T} = 3$ $e^{-\frac{1}{8}T} = \frac{3}{15.3526} = 0.1954$	M1
	$-\frac{1}{8}T = \ln 0.1954$	M1
	T = 13.06 or 13.1 or 13	A1 (3)
		(7 marks)

Notes: (b) (main scheme) M1 is for $(10+10e^{-\frac{5}{8}})e^{-\frac{1}{8}}$, or $\{10 + \text{their}(a)\}e^{-(1/8)}$

N.B. The answer is given. There are many correct answers seen which deserve M0A0 or M1A0 (If adding two values, these should be 4.724 and 8.825)

(c) 1^{st} M is for $(10+10e^{-\frac{5}{8}}) e^{-\frac{T}{8}} = 3$

 2^{nd} M is for converting $e^{-\frac{T}{8}} = k$ (k > 0) to $-\frac{T}{8} = \ln k$. This is independent of 1^{st} M.

Trial and improvement: M1 as scheme,

M1 correct process for their equation (two equal to 3 s.f.) A1 as scheme