

© Science Exam Papers

© Science Exam Papers

© Science Exam Papers

© Science Exam Papers

6. (a)	$\lambda=-4 \rightarrow a=18, \quad \mu=1 \rightarrow b=9$	M1 A1, A1
(b)	$\left(\begin{array}{l} 8+\lambda \\ 12+\lambda \\ 14-\lambda \end{array}\right) \cdot\left(\begin{array}{r} 1 \\ 1 \\ -1 \end{array}\right)=0$	M1
	$\therefore 8+\lambda+12+\lambda-14+\lambda=0$	A1
	Solves to obtain $\lambda \quad(\lambda=-2)$	dM1
	Then substitutes value for λ to give P at the point (6,10,16) (any form)	$\begin{equation*} \mathrm{M} 1, \mathrm{~A} 1 \tag{5} \end{equation*}$
(c)	$\mathrm{OP}=\sqrt{36+100+256}$	M1
	$(=\sqrt{392})=14 \sqrt{2}$	A1 cao (2)
	$d V \quad 2 \pi r^{2}$	
7. (a)	$\overline{d r}=4 \pi r$	(1)
	Uses $\frac{d r}{d t}=\frac{d V}{d t} \cdot \frac{d r}{d V} \quad$ in any form, $\quad=\frac{1000}{4 \pi r^{2}(2 t+1)^{2}}$	M1,A1
(c)	$V=\int 1000(2 t+1)^{-2} d t$ and integrate to $p(2 t+1)^{-1}, \quad=-500(2 t+1)^{-1}(+c)$	M1, A1
	Using $\mathrm{V}=0$ when $\mathrm{t}=0$ to find $\mathrm{c}, \quad(\mathrm{c}=500$, or equivalent)	M1
	$\therefore V=500\left(1-\frac{1}{2 t+1}\right) \quad$ (any form)	A1 (4)
(d)	(i) Substitute $\mathrm{t}=5$ to give V ,	
	then use $r=\sqrt[3]{\left(\frac{3 V}{4 \pi}\right)}$ to give $r,=4.77$	M1, A1 (3)
	(ii) Substitutes $\mathrm{t}=5$ and $\mathrm{r}=$ 'their value' into 'their' part (b)	M1
	$\frac{\mathrm{d} r}{\mathrm{~d} t}=0.0289 \quad\left(\approx 2.90 \times 10^{-2}\right)(\mathrm{cm} / \mathrm{s}) * \quad \mathrm{AG}$	A1 (2) [12]

© Science Exam Papers

