GCE

Edexcel GCE
Mathematics
Core Mathematics C4 (6666)

J une 2008

Mark Scheme (Final)

une 2008
 6666 Core Mathematics C4
 Mark Scheme

Note an expression like Area $\approx \frac{1}{2} \times 0.4+e^{0}+2\left(e^{0.08}+e^{0.32}+e^{0.72}+e^{1.28}\right)+e^{2}$ would score B1M1A0

Allow one term missing (slip!) in the [] brackets for M1.

The M1 mark for structure is for the material found in the curly brackets ie

$$
[\text { first } y \text { ordinate }+2(\text { intermediate } \mathrm{ft} y \text { ordinate })+\text { final } y \text { ordinate }]
$$

edexcel

Question Number	Scheme		Marks
2. (a)	$\left\{\begin{array}{l}u=x \Rightarrow \frac{d u}{d x}=1 \\ \frac{\mathrm{dv}}{\mathrm{d} x}=\mathrm{e}^{x} \Rightarrow v=\mathrm{e}^{x}\end{array}\right\}$		
	$\int x \mathrm{e}^{x} \mathrm{~d} x=x \mathrm{e}^{x}-\int \mathrm{e}^{x} .1 \mathrm{~d} x$	Use of 'integration by parts' formula in the correct direction. (See note.) Correct expression. (Ignore $\mathrm{d} x$)	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \end{aligned}$
	$\begin{aligned} & =x \mathrm{e}^{x}-\int \mathrm{e}^{x} \mathrm{~d} x \\ & =x \mathrm{e}^{x}-\mathrm{e}^{x}(+c) \end{aligned}$	Correct integration with/without + c	A1
(b) Way 1	$\left\{\begin{array}{l} u=x^{2} \Rightarrow \frac{\mathrm{~d} u}{\mathrm{dx}}=2 x \\ \frac{\mathrm{dv}}{\mathrm{dx}}=\mathrm{e}^{x} \Rightarrow v=\mathrm{e}^{x} \end{array}\right\}$		
	$\begin{aligned} \int x^{2} \mathrm{e}^{x} \mathrm{~d} x & =x^{2} \mathrm{e}^{x}-\int \mathrm{e}^{x} \cdot 2 x \mathrm{~d} x \\ & =x^{2} \mathrm{e}^{x}-2 \int x \mathrm{e}^{x} \mathrm{~d} x \\ & =x^{2} \mathrm{e}^{x}-2\left(x \mathrm{e}^{x}-\mathrm{e}^{x}\right)+c \end{aligned}$	Use of 'integration by parts’ formula in the correct direction. Correct expression. (Ignore $\mathrm{d} x$)	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \end{aligned}$
		Correct expression including $+\mathbf{c}$. (seen at any stage! in part (b)) You can ignore subsequent working.	A1 ISW
	$\left\{\begin{array}{l} =x^{2} \mathrm{e}^{x}-2 x \mathrm{e}^{x}+2 \mathrm{e}^{x}+c \\ =\mathrm{e}^{x}\left(x^{2}-2 x+2\right)+c \end{array}\right\}$	Ignore subsequent working	
			6 marks

Note integration by parts in the correct direction means that u and $\frac{\mathrm{dv}}{\mathrm{dx}}$ must be assigned/used as $u=x$ and $\frac{\mathrm{dv}}{\mathrm{dx}}=\mathrm{e}^{x}$ in part (a) for example.
$+c$ is not required in part (a).
$+c$ is required in part (b).

edexcel

Question Number	Scheme		Marks
Aliter 2. (b) Way 2	$\begin{aligned} & \begin{aligned} &\left\{\begin{array}{ll} u=x & \Rightarrow \\ \frac{d v}{d x}=x \mathrm{e}^{x} & \Rightarrow v=x \mathrm{e}^{x}-\mathrm{e}^{x} \end{array}\right\} \\ & \begin{aligned} \int x^{2} \mathrm{e}^{x} \mathrm{~d} x & =x\left(x \mathrm{e}^{x}-\mathrm{e}^{x}\right)-\int\left(x \mathrm{e}^{x}-\mathrm{e}^{x}\right) \mathrm{d} x \\ & =x\left(x \mathrm{e}^{x}-\mathrm{e}^{x}\right)+\int \mathrm{e}^{x} \mathrm{~d} x-\int x \mathrm{e}^{x} \mathrm{~d} x \end{aligned} \\ &=x\left(x \mathrm{e}^{x}-\mathrm{e}^{x}\right)+\mathrm{e}^{x}-\int x \mathrm{e}^{x} \mathrm{~d} x \end{aligned} \\ &=x\left(x \mathrm{e}^{x}-\mathrm{e}^{x}\right)+\mathrm{e}^{x}-\left(x \mathrm{e}^{x}-\mathrm{e}^{x}\right)+c \\ &\left\{\begin{array}{l} =x^{2} \mathrm{e}^{x}-x \mathrm{e}^{x}+\mathrm{e}^{x}-x \mathrm{e}^{x}+\mathrm{e}^{x}+c \\ = \end{array}\right\} \end{aligned}$	Use of 'integration by parts' formula in the correct direction. Correct expression. (Ignore $\mathrm{d} x$) Correct expression including + c. (seen at any stage! in part (b)) You can ignore subsequent working.	M1 A1 A1 ISW

Question Number	Scheme		Marks
3. (a) Way 1	From question, $\frac{\mathrm{d} A}{\mathrm{~d} t}=0.032$	$\frac{\mathrm{d} A}{\mathrm{~d} t}=0.032 \text { seen }$ or implied from working.	B1
	$\left\{A=\pi x^{2} \Rightarrow \frac{\mathrm{~d} A}{\mathrm{~d} x}=\right\} 2 \pi x$	$2 \pi x$ by itself seen or implied from working	B1
	$\frac{\mathrm{d} x}{\mathrm{~d} t}=\frac{\mathrm{d} A}{\mathrm{~d} t} \div \frac{\mathrm{d} A}{\mathrm{~d} x}=(0.032) \frac{1}{2 \pi x} ;\left\{=\frac{0.016}{\pi x}\right\}$	$0.032 \div \text { Candidate's } \frac{\mathrm{d} A}{\mathrm{~d} x} ;$	M1;
	When $x=2 \mathrm{~cm}, \frac{\mathrm{~d} x}{\mathrm{~d} t}=\frac{0.016}{2 \pi}$		
	Hence, $\frac{\mathrm{d} x}{\mathrm{~d} t}=0.002546479 \ldots \quad\left(\mathrm{~cm} \mathrm{~s}^{-1}\right)$	awrt 0.00255	A1 cso
			[4]
(b) Way 1	$V=\underline{\pi x^{2}(5 x)}=\underline{5 \pi x^{3}}$	$V=\underline{\pi x^{2}(5 x)}$ or $\underline{5 \pi x^{3}}$	B1
	$\frac{\mathrm{d} V}{\mathrm{~d} x}=15 \pi x^{2}$	$\frac{\mathrm{d} V}{\mathrm{~d} x}=15 \pi x^{2}$ or ft from candidate's V	B1 $\sqrt{ }$
	$\frac{\mathrm{d} V}{\mathrm{~d} t}=\frac{\mathrm{d} V}{\mathrm{~d} x} \times \frac{\mathrm{d} x}{\mathrm{~d} t}=15 \pi x^{2} .\left(\frac{0.016}{\pi x}\right) ;\{=0.24 x\}$ When $x=2 \mathrm{~cm}, \frac{\mathrm{~d} V}{\mathrm{~d} t}=0.24(2)=\underline{0.48}\left(\mathrm{~cm}^{3} \mathrm{~s}^{-1}\right)$	$\text { Candidate's } \frac{\mathrm{d} V}{\mathrm{~d} x} \times \frac{\mathrm{d} x}{\mathrm{~d} t}$	M1 $\sqrt{ }$
		$\underline{0.48}$ or awrt 0.48	A1 cso
			[4]
			8 marks

Part (b): Remember to give this mark for correct differentiation of V with respect to x. The first B1 in part (b) can be implied by a candidate writing down $\frac{\mathrm{d} V}{\mathrm{~d} x}=15 \pi x^{2}$.

Part (a): $0.032 \div$ Candidate's $\frac{\mathrm{d} A}{\mathrm{~d} X}$ can imply the first B1.

Part (b): FOR THIS QUESTION ONLY: It is possible to award any or both of the B1 B1 marks in part (b) for working also seen in part (a), BUT if you do this it must be clear in (a) that V is assigned to $\pi x^{2}(5 x)$ or or $5 \pi x^{3}$.

Allow $x \equiv r$, but a mixture of variables like $V=\pi x^{2}(5 r)$ is not appropriate. However, $V=\pi r^{2}(5 r)$ is okay.

In this question there are some other valid ways to arrive at the answer. If you are unsure of how to apply the mark scheme for these ways then send these items up to review for your team leader to look at.

Question Number	Example	
$\begin{aligned} & \text { 3. (a) } \\ & \text { EG } 1 \end{aligned}$	WARNING: 0.00255 does not necessarily mean 4 marks!! a) $\frac{d A}{d t}=0.032$.	
	Comment: EG 1 scores B1B0M1A0	
EG 2	$\begin{aligned} & \text { (a) } \frac{\mathrm{d} A}{\mathrm{~d} t}=0.032 \\ & \frac{\mathrm{~d} x}{\mathrm{~d} t}=(0.032) \frac{1}{\pi x^{2}}=\frac{0.032}{\pi x^{2}} \\ & \text { When } x=2 \mathrm{~cm}, \frac{\mathrm{~d} x}{\mathrm{~d} t}=\frac{0.032}{4 \pi}=0.00255 \end{aligned}$	
	Comment: EG 2 scores B1B0M0A0	

Question Number	Scheme		Marks
4. (a)	$3 x^{2}-y^{2}+x y=4 \quad($ eqn $*)$		
Way 1	(*)	Differentiates implicitly to include either $\left. \pm k y \frac{d y}{d x} \text { or } x \frac{d y}{d x} \text {. (Ignore }\left(\frac{d y}{d x}=\right)\right)$	M1
	$\left\{\frac{\mathrm{dx}}{\mathrm{x} x} \times\right\} \underline{6 x-2 y \frac{\mathrm{~d} y}{\mathrm{~d} x}}+\left(\underline{\underline{y+x \frac{\mathrm{~d} y}{\mathrm{~d} x}}}\right)=\underline{0}$	Correct application () of product rule	B1
		$\left(3 x^{2}-y^{2}\right) \rightarrow\left(\underline{6 x-2 y \frac{\mathrm{~d} y}{\mathrm{~d} x}}\right) \text { and }(4 \rightarrow \underline{0})$	A1
	$\left\{\frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{-6 x-y}{x-2 y}\right\} \text { or }\left\{\frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{6 x+y}{2 y-x}\right\}$	not necessarily required.	
	$\frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{8}{3} \Rightarrow \frac{-6 x-y}{x-2 y}=\frac{8}{3}$	Substituting $\frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{8}{3}$ into their equation.	M1*
	giving $-18 x-3 y=8 x-16 y$		
	giving $13 y=26 x$	Attempt to combine either terms in x or terms in y together to give either $a x$ or by.	dM1*
	Hence, $y=2 x \Rightarrow \underline{y-2 x}=0$	simplifying to give $\underline{y-2 x}=0 \quad$ AG	A1 cso
			[6]
(b) Way 1	At $P \& Q, y=2 x$. Substituting into eqn *		
	gives $3 x^{2}-(2 x)^{2}+x(2 x)=4$	Attempt replacing y by $2 x$ in at least one of the y terms in eqn *	M1
	Simplifying gives, $x^{2}=4 \Rightarrow x= \pm 2$	Either $x=2$ or $x=-2$	A1
	$y=2 x \Rightarrow y= \pm 4$		
	Hence coordinates are $\underline{(2,4)}$ and $(\underline{-2,-4)}$	Both $\underline{\underline{(2,4)} \text { and } \underline{(-2,-4)}}$	A1
			[3]
			9 marks

To award the final A1 mark you need to be convinced that the candidate has both coordinates. There must be link (albeit implied) between $x=2$ and $y=4$; and between $x=-2$ and $y=-4$. If you see extra points stated in addition to these two then award A0.

edexcel

Question Number	Scheme		Marks
$\begin{aligned} & \text { Aliter } \\ & \text { 4. (a) } \end{aligned}$	$3 x^{2}-y^{2}+x y=4 \quad($ eqn $*)$		
Way 2		Differentiates implicitly to include either $\pm k y \frac{d y}{d x}$ or $x \frac{d y}{d x}$. (Ignore $\left(\frac{d y}{d x}=\right)$)	M1
	$\left\{\frac{\mathrm{dx}}{\mathrm{~d} x} \not x\right\} \quad 6 x-2 y \frac{\mathrm{~d} y}{\mathrm{~d} x}+\left(\underline{\underline{y+x \frac{\mathrm{~d} y}{\mathrm{~d} x}}}\right)=\underline{0}$	$\begin{aligned} & \text { Correct application } \underline{\underline{()}} \text {) of product rule } \\ & \left(3 x^{2}-y^{2}\right) \rightarrow\left(\underline{6 x-2 y \frac{\mathrm{~d} y}{\mathrm{~d} x}}\right) \text { and }(4 \rightarrow \underline{0}) \end{aligned}$	B1 A1
	$\frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{8}{3} \Rightarrow 6 x-2 y\left(\frac{8}{3}\right)+y+x\left(\frac{8}{3}\right)=0$	Substituting $\frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{8}{3}$ into their equation.	M1*
	giving $\frac{26}{3} x-\frac{13}{3} y=0$	Attempt to combine either terms in x or terms in y together to give either $a x$ or $b y$.	dM1 *
	giving $26 x-13 y=0$		
	Hence, $13 y=26 x \Rightarrow y=2 x \Rightarrow \underline{y-2 x=0}$	simplifying to give $\underline{y-2 x=0}$ AG	A1 cso
Aliter (b) Way 2			[6]
	At $P \& Q, \quad x=\frac{y}{2}$. Substituting into eqn *		
	gives $3\left(\frac{y}{2}\right)^{2}-y^{2}+\left(\frac{y}{2}\right) y=4$	Attempt replacing x by $\frac{y}{2}$ in at least one of the y terms in eqn *	M1
	Gives $\frac{3}{4} y^{2}-y^{2}+\frac{1}{2} y^{2}=4$		
	Simplifying gives, $y^{2}=16 \Rightarrow \underline{y= \pm 4}$	Either $y=4$ or $y=-4$	A1
	$x=\frac{y}{2} \Rightarrow x= \pm 2$		
	Hence coordinates are (2,4) and (-2,-4)	Both (2,4) and (-2,-4)	A1
			[3]

To award the final A1 mark you need to be convinced that the candidate has both coordinates. There must be link (albeit implied) between $x=2$ and $y=4$; and between $x=-2$ and $y=-4$. If you see extra points stated in addition to these two then award A0.

edexcel

Question Number	Scheme		Marks
Aliter 4. (a) Way 3	$\begin{aligned} & 3 x^{2}-y^{2}+x y=4 \quad(\text { eqn *) } \\ & \left\{\frac{x^{2}}{x} \not\right\} \frac{6 x-2 y \frac{\mathrm{~d} y}{\mathrm{~d} x}}{}+\left(\underline{\left.\underline{y+x \frac{\mathrm{~d} y}{\mathrm{~d} x}}\right)=\underline{0}}\right. \\ & \left\{\frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{-6 x-y}{x-2 y}\right\} \text { or }\left\{\frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{6 x+y}{2 y-x}\right\} \\ & y=2 x \Rightarrow \frac{-6 x-2 x}{x-2(2 x)}=\frac{\mathrm{d} y}{\mathrm{~d} x} \\ & \text { giving } \frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{-8 x}{-3 x} \\ & \text { giving } \frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{8}{3} \end{aligned}$	Differentiates implicitly to include either $\pm k y \frac{\mathrm{dy}}{\mathrm{~d} x} \text { or } x \frac{\mathrm{dy}}{\mathrm{~d} x} \text {. (Ignore }\left(\frac{\mathrm{d} y}{\mathrm{~d} x}=\right) \text {) }$ Correct application () of product rule $\left(3 x^{2}-y^{2}\right) \rightarrow\left(6 x-2 y \frac{\mathrm{~d} y}{\mathrm{~d} x}\right) \text { and }(4 \rightarrow \underline{0})$ not necessarily required. Substituting $y=2 x$ into their equation. Attempt to combine x terms together. simplifying to give $\frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{8}{3} \mathbf{A G}$	M1 B1 A1 M1* dM1 * A1 cso

Very very few candidates may attempt partial differentiation. Please send these items to your team leader via review.

edexcel

(a) You would award B1M1A0 for $=\frac{1}{2}\left[1+\left(-\frac{1}{2}\right)\left(-\frac{3 x}{4}\right)+\frac{\left(-\frac{1}{2}\right)\left(-\frac{3}{2}\right)}{2!}(-3 x)^{2}+\ldots\right]$ because $* *$ is not consistent.
(a) If you see the constant term " $\frac{1}{2}$ " in a candidate's final binomial expansion, then you can award B1.

edexcel

\begin{tabular}{|c|c|c|c|}
\hline \begin{tabular}{l}
Question \\
Number
\end{tabular} \& Scheme \& \& Marks \\
\hline \multirow[t]{4}{*}{\begin{tabular}{l}
Aliter \\
5. (a) \\
Way 2
\end{tabular}} \& \multicolumn{3}{|l|}{\[
\frac{1}{\sqrt{(4-3 x)}}=(4-3 x)^{-\frac{1}{2}}
\]} \\
\hline \& \[
\begin{aligned}
\&= {\left[\frac{(4)^{-\frac{1}{2}}+\left(-\frac{1}{2}\right)(4)^{-\frac{3}{2}}(* * x) ;+\frac{\left(-\frac{1}{2}\right)\left(-\frac{3}{2}\right)}{2!}(4)^{-\frac{5}{2}}(* * x)^{2}+}{}\right.} \\
\& \text { with } * * \neq 1
\end{aligned}
\] \& \begin{tabular}{l}
\(\frac{1}{2}\) or \((4)^{-\frac{1}{2}}\) (See note \(\downarrow\)) \\
Expands \((4-3 x)^{-\frac{1}{2}}\) to give an un-simplified or simplified \\
\((4)^{-\frac{1}{2}}+\left(-\frac{1}{2}\right)(4)^{-\frac{3}{2}}(* * x)\); \\
A correct un-simplified or simplified
\(\qquad\)] expansion with candidate's followed through \((* * x)\)
\end{tabular} \& B1
M1;

A1 $\sqrt{ }$

\hline \& $$
\begin{aligned}
& =\left[\frac{\left.(4)^{-\frac{1}{2}}+\left(-\frac{1}{2}\right)(4)^{-\frac{3}{2}}(-3 x) ;+\frac{\left(-\frac{1}{2}\right)\left(-\frac{3}{2}\right)}{2!}(4)^{-\frac{5}{2}}(-3 x)^{2}+\right]}{=\left[\frac{1}{2}+\left(-\frac{1}{2}\right)\left(\frac{1}{8}\right)(-3 x)+\left(\frac{3}{8}\right)\left(\frac{1}{32}\right)\left(9 x^{2}\right)+\ldots\right]}\right.
\end{aligned}
$$ \& Award SC M1 if you see \&

\hline \& \[
=\frac{1}{2}+\frac{3}{16} x ;+\frac{27}{256} x^{2}+···

\] \& Anything that cancels to $\frac{1}{2}+\frac{3}{16} x$; Simplified $\frac{27}{256} x^{2}$ \& | A1; |
| :--- |
| A1 |
| [5] |

\hline
\end{tabular}

Attempts using Maclaurin expansion should be escalated up to your team leader.

If you see the constant term " $\frac{1}{2}$ " in a candidate's final binomial expansion, then you can award B1.

Note: In part (b) it is possible to award M1M0A1A0.

edexcel

Question Number	Scheme		Marks
6. (a)	Lines meet where: $\left(\begin{array}{c} -9 \\ 0 \\ 10 \end{array}\right)+\lambda\left(\begin{array}{c} 2 \\ 1 \\ -1 \end{array}\right)=\left(\begin{array}{c} 3 \\ 1 \\ 17 \end{array}\right)+\mu\left(\begin{array}{c} 3 \\ -1 \\ 5 \end{array}\right)$		
	$\text { Any two of } \begin{align*} & \mathbf{i}:-9+2 \lambda=3+3 \mu \tag{1}\\ & \mathbf{j}: \quad \lambda=1-\mu \tag{2}\\ & \mathbf{k}: 10-\lambda=17+5 \mu \tag{3} \end{align*}$	Need any two of these correct equations seen anywhere in part (a).	M1
	(1) - 2(2) gives: $-9=1+5 \mu \quad \Rightarrow \mu=-2$	Attempts to solve simultaneous equations to find one of either λ or μ	dM1
	(2) gives: $\quad \lambda=1--2=3$	Both $\underline{\lambda=3}$ \& $\underline{\mu=-2}$	A1
	$\mathbf{r}=\left(\begin{array}{c} -9 \\ 0 \\ 10 \end{array}\right)+3\left(\begin{array}{c} 2 \\ 1 \\ -1 \end{array}\right) \quad \text { or } \quad \mathbf{r}=\left(\begin{array}{c} 3 \\ 1 \\ 17 \end{array}\right)-2\left(\begin{array}{c} 3 \\ -1 \\ 5 \end{array}\right)$	Substitutes their value of either λ or μ into the line l_{1} or l_{2} respectively. This mark can be implied by any two correct components of $(-3,3,7)$.	ddM1
	Intersect at $\mathbf{r}=\left(\begin{array}{c}-3 \\ 3 \\ 7\end{array}\right)$ or $\mathbf{r}=\underline{-3 \mathbf{i}+3 \mathbf{j}+7 \mathbf{k}}$	$\begin{aligned} & \left(\begin{array}{c} -3 \\ 3 \\ 7 \end{array}\right) \end{aligned} \text { or } \frac{-3 \mathbf{i}+3 \mathbf{j}+7 \mathbf{k}}{\text { or }(-3,3,7)}$	A1
	Either check k: $\begin{array}{ll} \lambda=3: & \text { LHS }=10-\lambda=10-3=7 \\ \mu=-2: & \text { RHS }=17+5 \mu=17-10=7 \end{array}$ (As LHS = RHS then the lines intersect.)	Either check that $\lambda=3, \mu=-2$ in a third equation or check that $\lambda=3$, $\mu=-2$ give the same coordinates on the other line. Conclusion not needed.	$\begin{array}{rrr}\text { B1 } & \\ & \\ & {[6]}\end{array}$
	$\mathbf{d}_{1}=2 \mathbf{i}+\mathbf{j}-\mathbf{k}, \quad \mathbf{d}_{2}=3 \mathbf{i}-\mathbf{j}+5 \mathbf{k}$		
Way 1	$\text { As } \mathbf{d}_{1} \bullet \mathbf{d}_{2}=\left(\begin{array}{c} 2 \\ 1 \\ -1 \end{array}\right) \cdot\left(\begin{array}{c} 3 \\ -1 \\ 5 \end{array}\right)=\underline{(2 \times 3)+(1 \times-1)+(-1 \times 5)}=0$	Dot product calculation between the two direction vectors: $\frac{(2 \times 3)+(1 \times-1)+(-1 \times 5)}{\text { or } \underline{6-1-5}}$	M1
	Then l_{1} is perpendicular to l_{2}.	Result ' $=0$ ' and appropriate conclusion	$\begin{array}{rr}\text { A1 } \\ \\ & \\ \end{array}$

edexcel

Question Number	Scheme		Marks
6. (c) Way 1	Equating $\mathbf{i} ; \quad-9+2 \lambda=5 \Rightarrow \lambda=7$		
	$\mathbf{r}=\left(\begin{array}{c} -9 \\ 0 \\ 10 \end{array}\right)+7\left(\begin{array}{c} 2 \\ 1 \\ -1 \end{array}\right)=\left(\begin{array}{l} 5 \\ 7 \\ 3 \end{array}\right)$ ($=\overrightarrow{O A}$. Hence the point A lies on l_{1}.)	Substitutes candidate's $\lambda=7$ into the line l_{1} and finds $5 \mathbf{i}+7 \mathbf{j}+3 \mathbf{k}$. The conclusion on this occasion is not needed.	B1
			[1]
Aliter (c) Way 2	At $A ;-9+2 \lambda=5, \lambda=7 \& 10-\lambda=3$ gives $\lambda=7$ for all three equations. (Hence the point A lies on l_{1}.)	Writing down all three underlined equations and finds	
		$\lambda=7$ for all three equations. The conclusion on this occasion is not needed.	B1
(d)			[1]
(d) Way 1	$\overrightarrow{A X}=\overrightarrow{O X}-\overrightarrow{O A}=\underline{\left(\begin{array}{c} -3 \\ 3 \\ 7 \end{array}\right)-\left(\begin{array}{l} 5 \\ 7 \\ 3 \end{array}\right)}=\left(\begin{array}{c} -8 \\ -4 \\ 4 \end{array}\right)$	Finding the difference between their $\overrightarrow{O X}$ (can be implied) and $\overrightarrow{O A}$. $\overrightarrow{A X}= \pm\left(\left(\begin{array}{c} -3 \\ 3 \\ 7 \end{array}\right)-\left(\begin{array}{l} 5 \\ 7 \\ 3 \end{array}\right)\right)$	M1 $\sqrt{ \pm}$
	$\overrightarrow{O B}=\overrightarrow{O A}+\overrightarrow{A B}=\overrightarrow{O A}+2 \overrightarrow{A X}$		
	$\overrightarrow{O B}=\left(\begin{array}{l} 5 \\ 7 \\ 3 \end{array}\right)+2\left(\begin{array}{c} -8 \\ -4 \\ 4 \end{array}\right)$ Hence, $\overrightarrow{O B}=\left(\begin{array}{c}-11 \\ -1 \\ 11\end{array}\right)$ or $\overrightarrow{O B}=\underline{-11 \mathbf{i}-\mathbf{j}+11 \mathbf{k}}$	$\left(\begin{array}{l}5 \\ 7 \\ 3\end{array}\right)+2($ their $\overrightarrow{A X})$	dM1 $\sqrt{ }$
			A1
			[3]
			12 marks

edexcel

edexcel

Question Number	Scheme		Marks
Aliter 6. (d)	$\overrightarrow{O A}=5 \mathbf{i}+7 \mathbf{j}+3 \mathbf{k}$ and the point of intersection $\overrightarrow{O X}=-3 \mathbf{i}+3 \mathbf{j}+7 \mathbf{k}$		
Way 4	$\left(\begin{array}{l} 5 \\ 7 \\ 3 \end{array}\right) \rightarrow\left(\begin{array}{c} \text { Minus 8 } \\ \text { Minus 4 } \\ \text { Plus 4 } \end{array}\right) \rightarrow\left(\begin{array}{c} -3 \\ 3 \\ 7 \end{array}\right)$	Finding the difference between their $\overrightarrow{O X}$ (can be implied) and $\overrightarrow{O A}$. $(\overrightarrow{A X}=) \pm\left(\left(\begin{array}{c} -3 \\ 3 \\ 7 \end{array}\right)-\left(\begin{array}{l} 5 \\ 7 \\ 3 \end{array}\right)\right)$	M1 $\sqrt{ } \pm$
	$\left(\begin{array}{c} -3 \\ 3 \\ 7 \end{array}\right) \rightarrow\left(\begin{array}{c} \text { Minus 8 } \\ \text { Minus 4 } \\ \text { Plus 4 } \end{array}\right) \rightarrow\left(\begin{array}{c} -11 \\ -1 \\ 11 \end{array}\right)$	$($ their $\overrightarrow{O X})+($ their $\overrightarrow{A X})$	$\mathrm{dM} 1 \sqrt{ }$
	Hence, $\overrightarrow{O B}=\underline{\left(\begin{array}{c}-11 \\ -1 \\ 11\end{array}\right)}$ or $\overrightarrow{O B}=\underline{-11 \mathbf{i}-\mathbf{j}+11 \mathbf{k}}$	$\begin{aligned} & \frac{\left(\begin{array}{c} -11 \\ -1 \\ 11 \end{array}\right)}{\text { or } \underline{-11 \mathbf{i}-\mathbf{j}+11 \mathbf{k}}} \\ & \text { or }(-11,-1,11) \end{aligned}$	A1
Aliter (d) Way 5	$\overrightarrow{O A}=5 \mathbf{i}+7 \mathbf{j}+3 \mathbf{k}$ and $\overrightarrow{O B}=a \mathbf{i}+b \mathbf{j}+c \mathbf{k}$ and the point of intersection $\overrightarrow{O X}=-3 \mathbf{i}+3 \mathbf{j}+7 \mathbf{k}$		
	As X is the midpoint of $A B$, then		
	$(-3,3,7)=\left(\frac{5+a}{2}, \frac{7+b}{2}, \frac{3+c}{2}\right)$	Writing down any two of these "equations" correctly.	M1 $\sqrt{ }$
	$\begin{aligned} & a=2(-3)-5=-11 \\ & b=2(3)-7=-1 \\ & c=2(7)-3=11 \end{aligned}$	An attempt to find at least two of a, b or c.	dM1 $\sqrt{ }$
	Hence, $\overrightarrow{O B}=\underline{\left(\begin{array}{c}-11 \\ -1 \\ 11\end{array}\right)}$ or $\overrightarrow{O B}=\underline{-11 \mathbf{i}-\mathbf{j}+11 \mathbf{k}}$	$\underline{\left(\begin{array}{c} -11 \\ -1 \\ 11 \end{array}\right)} \text { or } \underline{-11 \mathbf{i}-\mathbf{j}+11 \mathbf{k}}$ or $(-11,-1,11)$ or $a=-11, b=-1, c=11$	A1
			[3]

edexcel

Question Number	Scheme		Marks
Aliter 6. (b) Way 2	$\mathbf{d}_{1}=2 \mathbf{i}+\mathbf{j}-\mathbf{k}, \mathbf{d}_{2}=3 \mathbf{i}-\mathbf{j}+5 \mathbf{k} \& \theta$ is angle $\begin{aligned} & \cos \theta=\frac{\mathbf{d}_{1} \bullet \mathbf{d}_{2}}{\left(\left\|\mathbf{d}_{1}\right\| \cdot\left\|\mathbf{d}_{2}\right\|\right)}=\frac{\left(\begin{array}{c} 2 \\ 1 \\ -1 \end{array}\right) \cdot\left(\begin{array}{c} 3 \\ -1 \\ 5 \end{array}\right)}{\left(\sqrt{(2)^{2}+(1)^{2}+(-1)^{2}} \cdot \sqrt{(3)^{2}+(-1)^{2}+(5)^{2}}\right)} \\ & \cos \theta=\frac{6-1-5 \longleftarrow}{\left(\sqrt{(2)^{2}+(1)^{2}+(-1)^{2}} \cdot \sqrt{(3)^{2}+(-1)^{2}+(5)^{2}}\right)} \end{aligned}$ $\cos \theta=0 \Rightarrow \underline{\theta=90^{\circ}}$ or lines are perpendicular	Dot product calculation between the two direction vectors: $(2 \times 3)+(1 \times-1)+(-1 \times 5)$ $\cos \theta=0$ and $\theta=90^{\circ}$ or lines are perpendicular	M1 A1 cao [2]

edexcel

Question Number	Scheme		Marks
7. (a) Way 1	$\frac{2}{4-y^{2}} \equiv \frac{2}{(2-y)(2+y)} \equiv \frac{A}{(2-y)}+\frac{B}{(2+y)}$		
	$2 \equiv A(2+y)+B(2-y)$ Let $y=-2, \quad 2=B(4) \Rightarrow B=\frac{1}{2}$	Forming this identity. NB: A \& B are not assigned in this question	M1
	Let $y=2, \quad 2=A(4) \Rightarrow A=\frac{1}{2}$	Either one of $A=\frac{1}{2}$ or $B=\frac{1}{2}$	A1
	giving $\frac{\frac{1}{2}}{(2-y)}+\frac{\frac{1}{2}}{(2+y)}$	$\frac{\frac{1}{2}}{(2-y)}+\frac{\frac{1}{2}}{(2+y)}$, aef	A1 cao
	(If no working seen, but candidate writes down correct partial fraction then award all three marks. If no working is seen but one of A or B is incorrect then M0A0A0.)		[3]
Aliter 7. (a) Way 2	$\frac{2}{4-y^{2}} \equiv \frac{-2}{y^{2}-4} \equiv \frac{-2}{(y-2)(y+2)} \equiv \frac{A}{(y-2)}+\frac{B}{(y+2)}$		
	$-2 \equiv A(y+2)+B(y-2)$ Let $y=-2, \quad-2=B(-4) \Rightarrow B=\frac{1}{2}$	Forming this identity. NB: A \& B are not assigned in this question	M1
	Let $y=2, \quad-2=A(4) \Rightarrow A=-\frac{1}{2}$	Either one of $A=-\frac{1}{2}$ or $B=\frac{1}{2}$	A1
	giving $\frac{-\frac{1}{2}}{(y-2)}+\frac{\frac{1}{2}}{(y+2)}$	$\frac{-\frac{1}{2}}{(y-2)}+\frac{\frac{1}{2}}{(y+2)}$, aef	$\underline{\text { A1 cao }}$
	(If no working seen, but candidate writes down correct partial fraction then award all three marks. If no working is seen but one of A or B is incorrect then M0A0A0.)		

Note also that: $2 \equiv A(y-2)+B(-y-2)$ gives $A=-\frac{1}{2}, B=-\frac{1}{2}$

Note: that the partial fraction needs to be correctly stated for the final A mark in part (a). This partial fraction must be stated in part (a) and cannot be recovered from part (b).

edexcel

Question Number	Scheme	Marks
7. (b) Way 1		B1
		B1 M1; A1 $\sqrt{ }$
		M1*
		M1
		dM1*
		A1 aef [8]
		11 marks

Note: This M1 mark for finding c appears as B1 on ePEN.

edexcel

edexcel

Question Number	Scheme	Marks
Aliter 7. (b) Way 3	Using either the quotient (or product) or power laws for logarithms CORRECTLY. Using the log laws correctly to obtain a single log term on both sides of the equation. Note taking out the logs results in $y-2 \rightarrow 2-y$ Hence, $\quad \sec ^{2} x=\frac{8+4 y}{2-y}$	B1
		B1
		M1; A1 $\sqrt{\text { - }}$
		M1*
		M1
		dM1*
		A1 aef
		[8]

edexcel

\begin{tabular}{|c|c|c|}
\hline Question Number \& Example \& \\
\hline 7. (b) \& \begin{tabular}{l}
The first four marks in part (b). \\
In part (a) this candidate had correctly answered part (a). \\
b). \(2 \cot x \frac{d y}{d x}=\left(4-y^{2}\right)\) \\
\(-\int \frac{2 \cot x}{-\int \frac{1}{\left(4-y^{2}\right)} d y}=\sqrt{-\int}=\int \frac{\left.1-y^{2}\right) d x}{2 \cot x} d x\)
\(-\int \frac{1}{\left(4-y^{2}\right)} d y=\int 2+\)
\[
\begin{aligned}
\& \int \frac{1}{\left(4-y^{2}\right)} d y=\int \frac{1}{2 \cot x} \cdot d x \\
\& \int \frac{1}{\left(4-y^{2}\right)} d y=\int 2 \tan x \cdot d x
\end{aligned}
\]
\[
\begin{aligned}
\& \quad \int \frac{1}{4}\left(\frac{1}{2-y}+\frac{1}{2+y}\right) d y=\int 2 \tan x d x \\
\& \frac{1}{4} \int \frac{1}{2-y}+\frac{1}{2+y} d y=\int 2 \tan x d x \\
\& \frac{1}{4}[-\ln (2-y)+\ln (2+y)=2 \ln \sec x
\end{aligned}
\]
\end{tabular} \& B1
B1

M1

A0

\hline \& Comment 1: Even though the candidate has correctly substituted and then integrated the LHS, the constant 2 on the right hand side is incorrect. Therefore this expression is equivalent to $\therefore-\frac{1}{8} \ln (2-y)+\frac{1}{8} \ln (2+y)=\int \tan x \mathrm{~d} x$ which is incorrect from the candidate's working. \&

\hline \& Comment 2: If the candidate had omitted line 3 of part (b), then the candidate will still score the first B (separating the variables) for $\int \frac{1}{4-y^{2}} \mathrm{~d} y=\int 2 \tan x \mathrm{~d} x$, because the position of the " 2 " would be ignored. \&

\hline
\end{tabular}

Note that " (their m_{N})", means that the tangent gradient has to be changed. Note a change like $\mathrm{m}(\mathbf{N})=\frac{1}{\text { their } \mathrm{m}(\mathbf{T})}$ is okay. This could score a maximum of M1 A1 M1* dM0* dM1* A0.

Note the final A1 is cso, meaning that the previous 5 marks must be awarded before the final mark can be awarded.

Note in (b) the marks are now M1A1M1M1M1A1. Apply the marks in this order on ePEN.

edexcel

Note that " (their m_{N})", means that the tangent gradient has to be changed. Note a change like $\mathrm{m}(\mathbf{N})=\frac{1}{\text { their } \mathrm{m}(\mathbf{T})}$ is okay. This could score a maximum of M1 A1 M1* dM0* dM1* A0.

- Note: dM1 denotes a method mark which is dependent upon the award of the previous method mark. dM1* denotes a method mark which is dependent upon the award of the previous method M1* mark.

