# GCE Examinations Advanced Subsidiary

### **Core Mathematics C4**

Paper C

Time: 1 hour 30 minutes

#### Instructions and Information

Candidates may use any calculator EXCEPT those with the facility for symbolic algebra, differentiation and/or integration.

Full marks may be obtained for answers to ALL questions.

Mathematical formulae and statistical tables are available.

This paper has seven questions.

#### Advice to Candidates

You must show sufficient working to make your methods clear to an examiner. Answers without working may gain no credit.



Written by Shaun Armstrong
© Solomon Press

These sheets may be copied for use solely by the purchaser's institute.

| 1. | TT      | • ,     |      | 1  | 4     | 4        | 1    | 11 1 |
|----|---------|---------|------|----|-------|----------|------|------|
|    | LICE    | integra | T10n | nv | narre | $T \cap$ | SHOW | tnat |
| 1. | $\circ$ | integra | uon  | υy | parts | w        | SHOW | unat |

$$\int_{1}^{2} x \ln x \, dx = 2 \ln 2 - \frac{3}{4}. \tag{6}$$

## **2.** (a) Use the trapezium rule with two intervals of equal width to find an approximate value for the integral

$$\int_0^2 \arctan x \, dx. \tag{5}$$

**(2)** 

- (b) Use the trapezium rule with four intervals of equal width to find an improved approximation for the value of the integral.
- 3. A curve has the equation

$$3x^2 - 2x + xy + y^2 - 11 = 0.$$

The point P on the curve has coordinates (-1, 3).

- (a) Show that the normal to the curve at P has the equation y = 2 x. (7)
- (b) Find the coordinates of the point where the normal to the curve at P meets the curve again. (4)
- **4.** The points A and B have coordinates (3, 9, -7) and (13, -6, -2) respectively.
  - (a) Find, in vector form, an equation for the line l which passes through A and B. (2)
  - (b) Show that the point C with coordinates (9, 0, -4) lies on l. (2)

The point D is the point on l closest to the origin, O.

- (c) Find the coordinates of D. (4)
- (d) Find the area of triangle OAB to 3 significant figures. (3)

5. A bath is filled with hot water which is allowed to cool. The temperature of the water is  $\theta$ °C after cooling for t minutes and the temperature of the room is assumed to remain constant at 20°C.

Given that the rate at which the temperature of the water decreases is proportional to the difference in temperature between the water and the room,

(a) write down a differential equation connecting  $\theta$  and t. (2)

Given also that the temperature of the water is initially 37°C and that it is 36°C after cooling for four minutes,

(b) find, to 3 significant figures, the temperature of the water after ten minutes. (8)

Advice suggests that the temperature of the water should be allowed to cool to 33°C before a child gets in.

(c) Find, to the nearest second, how long a child should wait before getting into the bath.

Turn over

**(3)** 

**6.** 

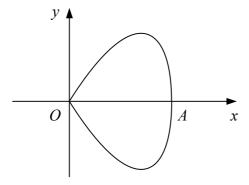



Figure 1

Figure 1 shows the curve with parametric equations

$$x = 3 \sin t$$
,  $y = 2 \sin 2t$ ,  $0 \le t < \pi$ .

The curve meets the x-axis at the origin, O, and at the point A.

(a) Find the value of 
$$t$$
 at  $O$  and the value of  $t$  at  $A$ . (2)

The region enclosed by the curve is rotated through  $\pi$  radians about the *x*-axis.

(b) Show that the volume of the solid formed is given by

$$\int_0^{\frac{\pi}{2}} 12\pi \sin^2 2t \cos t \, dt. \tag{3}$$

**(8)** 

**(5)** 

(c) Using the substitution  $u = \sin t$ , or otherwise, evaluate this integral, giving your answer as an exact multiple of  $\pi$ .

7. 
$$f(x) = \frac{8-x}{(1+x)(2-x)}, |x| < 1.$$

- (a) Express f(x) in partial fractions. (3)
- (b) Show that

$$\int_0^{\frac{1}{2}} f(x) dx = \ln k,$$

where k is an integer to be found.

(c) Find the series expansion of f(x) in ascending powers of x up to and including the term in  $x^3$ , simplifying each coefficient. (6)

**END**