## GCE Examinations Advanced Subsidiary

# **Core Mathematics C4**

Paper L

### Time: 1 hour 30 minutes

#### Instructions and Information

Candidates may use any calculator EXCEPT those with the facility for symbolic algebra, differentiation and/or integration.

Full marks may be obtained for answers to ALL questions.

Mathematical formulae and statistical tables are available.

This paper has seven questions.

#### Advice to Candidates

You must show sufficient working to make your methods clear to an examiner. Answers without working may gain no credit.



Written by Shaun Armstrong © Solomon Press

These sheets may be copied for use solely by the purchaser's institute.

1. The number of people, n, in a queue at a Post Office t minutes after it opens is modelled by the differential equation

$$\frac{\mathrm{d}n}{\mathrm{d}t} = \mathrm{e}^{0.5t} - 5, \quad t \ge 0.$$

| (a)        | Find, to the nearest second, the time when the model predicts that there will be<br>the least number of people in the queue. | (3) |
|------------|------------------------------------------------------------------------------------------------------------------------------|-----|
| <i>(b)</i> | Given that there are 20 people in the queue when the Post Office opens, solve<br>the differential equation.                  | (4) |
| (c)        | Explain why this model would not be appropriate for large values of <i>t</i> .                                               | (1) |

2. A curve has the equation

$$3x^2 + xy - 2y^2 + 25 = 0.$$

Find an equation for the normal to the curve at the point with coordinates (1, 4), giving your answer in the form ax + by + c = 0, where *a*, *b* and *c* are integers. (8)

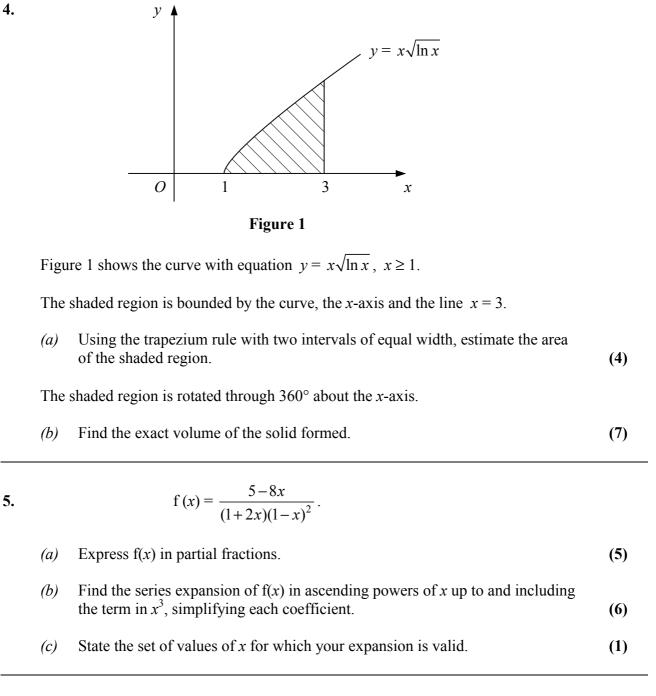
3. (a) Use the substitution  $u = 2 - x^2$  to find

ſ

$$\frac{x}{2-x^2} dx.$$
 (4)

(b) Evaluate

$$\int_{0}^{\frac{\pi}{4}} \sin 3x \cos x \, dx.$$
 (6)



Turn over

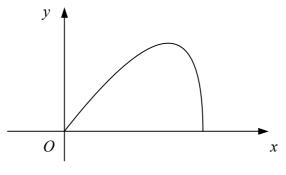


Figure 2

Figure 2 shows the curve with parametric equations

 $x = t + \sin t$ ,  $y = \sin t$ ,  $0 \le t \le \pi$ .

- (a) Find  $\frac{dy}{dx}$  in terms of t. (3)
- (b) Find, in exact form, the coordinates of the point where the tangent to the curve is parallel to the *x*-axis.(3)
- (c) Show that the region bounded by the curve and the x-axis has area 2. (6)

(2)

- 7. The line  $l_1$  passes through the points A and B with position vectors  $(3\mathbf{i} + 6\mathbf{j} 8\mathbf{k})$  and  $(8\mathbf{j} 6\mathbf{k})$  respectively, relative to a fixed origin.
  - (a) Find a vector equation for  $l_1$ .

The line  $l_2$  has vector equation

$$\mathbf{r} = (-2\mathbf{i} + 10\mathbf{j} + 6\mathbf{k}) + \mu(7\mathbf{i} - 4\mathbf{j} + 6\mathbf{k}),$$

where  $\mu$  is a scalar parameter.

| <i>(b)</i>                                                            | Show that lines $l_1$ and $l_2$ intersect.                         | (4) |  |
|-----------------------------------------------------------------------|--------------------------------------------------------------------|-----|--|
| (c)                                                                   | Find the coordinates of the point where $l_1$ and $l_2$ intersect. | (2) |  |
| The point C lies on $l_2$ and is such that AC is perpendicular to AB. |                                                                    |     |  |
| (d)                                                                   | Find the position vector of <i>C</i> .                             | (6) |  |

#### END