Version 1.0

General Certificate of Education June 2010

Chemistry

CHEM1
Foundation Chemistry

Mark schemes are prepared by the Principal Examiner and considered, together with the relevant questions, by a panel of subject teachers. This mark scheme includes any amendments made at the standardisation meeting attended by all examiners and is the scheme which was used by them in this examination. The standardisation meeting ensures that the mark scheme covers the candidates' responses to questions and that every examiner understands and applies it in the same correct way. As preparation for the standardisation meeting each examiner analyses a number of candidates' scripts: alternative answers not already covered by the mark scheme are discussed at the meeting and legislated for. If, after this meeting, examiners encounter unusual answers which have not been discussed at the meeting they are required to refer these to the Principal Examiner.

It must be stressed that a mark scheme is a working document, in many cases further developed and expanded on the basis of candidates' reactions to a particular paper. Assumptions about future mark schemes on the basis of one year's document should be avoided; whilst the guiding principles of assessment remain constant, details will change, depending on the content of a particular examination paper.

Further copies of this Mark Scheme are available to download from the AQA Website: www.aqa.org.uk

Copyright © 2010 AQA and its licensors. All rights reserved.

COPYRIGHT
AQA retains the copyright on all its publications. However, registered centres for AQA are permitted to copy material from this booklet for their own internal use, with the following important exception: AQA cannot give permission to centres to photocopy any material that is acknowledged to a third party even for internal use within the centre.

Set and published by the Assessment and Qualifications Alliance.

\begin{tabular}{|c|c|c|c|c|c|}
\hline Qu \& Part \& $$
\begin{array}{|l}
\hline \text { Sub } \\
\text { Part } \\
\hline
\end{array}
$$ \& Marking Guidance \& Mark \& Comments

\hline 1 \& a \& i \& shared pair of electrons \& 1 \& Can have one electron from each atom contributes to the bond Not both electrons from one atom

\hline 1 \& a \& ii \& $$
\frac{1}{2} \mathrm{Cl}_{2}+\frac{3}{2} \mathrm{~F}_{2} \rightarrow \mathrm{ClF}_{3}
$$ \& 1 \& Only Ignore state symbols even if wrong

\hline 1 \& b \& \&

 \& 1

1 \& | Allow any structure with 4 bp |
| :--- |
| Watch for Cl in centre- it must be C |
| Ignore wrong bond angles |
| Representations of lone pairs allowed are the two examples shown with or without the electrons in the lobe. |
| Also they can show the lone pair for either structure by two crosses /dots or a line with two crosses/dots on it e.g. |
| Or a structure with 3 bp and 2 lp |

\hline 1 \& c \& \& Dipole - dipole \& 1 \& | Allow van der Waals/ vdw/ London/ dispersion/ temporary dipole induced dipole |
| :--- |
| Not dipole alone |

\hline
\end{tabular}

1	d	i	Coordinate/ dative (covalent) (Lone) pair of electrons/ both electrons (on F) Donated from F^{-}/ fluoride or donated to the BF_{3}	$\begin{aligned} & 1 \\ & 1 \\ & 1 \end{aligned}$	If wrong CE = $0 / 3$ but if 'covalent' or left top line blank, mark on. $C E$ if lone pair is from B Must have the - sign on the F ie F^{-} Ignore Fl^{-} M3 dependent on M2
1	d	ii	109° to 109.5°	1	
1	e		$\begin{aligned} & \frac{238 \times 100}{438} \\ & =54.3 \% \end{aligned}$	1 1	For 1 mark allow 238 as numerator and 438 as denominator or correct strings 2 marks if correct answer to 3 sig figs. 54% or greater than 3 sig figs = 1 mark

Qu	Part	$\begin{aligned} & \hline \text { Sub } \\ & \text { Part } \\ & \hline \end{aligned}$	Marking Guidance	Mark	Comments
2	a		Cross between the Na cross and the Mg cross	1	
2	b		$\begin{aligned} & \mathrm{Al}(\mathrm{~g}) \rightarrow \mathrm{Al}^{+}(\mathrm{g})+\mathrm{e}- \\ & \mathrm{Al}(\mathrm{~g})-\mathrm{e}-\rightarrow \mathrm{Al}^{+}(\mathrm{g}) \\ & \mathrm{Al}(\mathrm{~g})+\mathrm{e}-\rightarrow \mathrm{Al}^{+}(\mathrm{g})+2 \mathrm{e}- \end{aligned}$	2	One mark for state symbols consequential on getting equation correct. Electron does not have to have the - sign on it Ignore (g) if put as state symbol with e^{-}but penalise state symbol mark if other state symbols on e^{-}
2	c		$2^{\text {nd }} /$ second / $2 / \mathrm{II}$	1	Only
2	d		Paired electrons in (3)p orbital repel	$\begin{aligned} & 1 \\ & 1 \\ & \hline \end{aligned}$	Penalise wrong number If paired electrons repel allow M2
2	e		Neon/ Ne $1 s^{2} 2 s^{2} 2 p^{6} /[\mathrm{He}\} 2 s^{2} 2 p^{6}$	$\begin{aligned} & 1 \\ & 1 \end{aligned}$	No consequential marking from wrong element Allow capital s and p Allow subscript numbers
2	f		Decreases Atomic radius increases/ electron removed further from nucleus or nuclear charge/ electron in higher energy level/ Atoms get larger/ more shells As group is descended more shielding	1 1 1	CE if wrong Accept more repulsion between more electrons for M2 Mark is for distance from nucleus Must be comparative answers from M2 and M3 CE M2 and M3 if mention molecules Not more sub-shells

Qu	Part	$\begin{array}{\|l} \hline \text { Sub } \\ \text { Part } \\ \hline \end{array}$	Marking Guidance	Mark	Comments
3	a	i	$\begin{aligned} & M_{\mathrm{r}} \mathrm{MgO}=40.3 \\ & 0.741 / 40.3=0.0184 \end{aligned}$	1	If used 40 then penalise this mark but allow consequential M2 (0.0185) 0.018 with no M_{r} shown $=0$ Penalise if not 3 sig figs in this clip only
3	a	ii	$0.0184 \times \underline{5 / 2}=0.0460$	1	Allow 0.0459 to 0.0463 Allow their 3(a)(i) $x 5 / 2$ ie allow process mark of $x 5 / 2$ but insist on a correct answer being written down Ignore sig figs
3	b		$\begin{aligned} & \begin{array}{l} \text { pV }=n R T \\ \left(\mathrm{~V}=\frac{0.402 \times 8.31 \times 333)}{100000}\right. \\ 0.0111 \\ 11.1\left(\mathrm{dm}^{3}\right) \end{array} \\ & \end{aligned}$	1 1 1	If rearranged incorrectly then lose M1 If this expression correct then candidate has scored first mark Ignore units 3 marks for $11.1\left(\mathrm{dm}^{3}\right)$ However if $11.1 \mathrm{~m}^{3}$ or cm^{3} allow 2 (ie penalise wrong units in final answer) Ignore sig figs- but must be 2 sig figs or greater
3	c	i	$0.0152 \times 2=0.0304$	1	Allow 0.03
3	c	ii	$0.938 \mathrm{~mol} \mathrm{dm}^{-3}$	1	Allow range 0.92-0.94 Minimum 2 sig figs Allow consequential marking from 3(c)(i) Ignore units even if wrong

Qu	Part	Sub Part	Marking Guidance	Mark	Comments
4	a		$\begin{array}{\|lc} \hline \mathrm{O}=74.1 \% \\ \frac{25.9}{14} & \frac{74.1}{16} \\ 1.85 & 4.63 \\ 1 & 2.5 \\ \mathrm{~N}_{2} \mathrm{O}_{5} & \\ \hline \end{array}$	1 1 1	If atomic numbers or molecular masses are used lose M2 This ratio alone will not score the final mark. (It would get 2) Allow 3 marks for $\mathrm{N}_{2} \mathrm{O}_{5}$
4	b		Toxic/ poisonous/ forms an acidic gas / forms NO_{2} which is acidic/ respiratory irritant/ forms HNO_{3} when NO reacts with water and oxygen/ triggers asthma attacks/ greenhouse gas/ photochemical smog/ contributes to global warming /formation of acid rain	1	ignore NO is an acidic gas or NO is acidic in water Not references to ozone layer
4	c		$2 \mathrm{NO}+\mathrm{O}_{2} \rightarrow 2 \mathrm{NO}_{2}$	1	Accept multiples or fractions of equation Ignore wrong state symbols
4	d		Nitrogen / N_{2} and oxygen / O_{2} combine/react spark / high temperature $/ 2500-4000^{\circ} \mathrm{C}$	1	QWC (not N and O combine) Not nitrogen in fuel Allow $\mathrm{N}_{2}+\mathrm{O}_{2} \rightarrow 2 \mathrm{NO}$ for M1 only
4	e		$2 \mathrm{NO}+2 \mathrm{CO} \rightarrow \mathrm{~N}_{2}+2 \mathrm{CO}_{2}$ OR $2 \mathrm{NO} \rightarrow \mathrm{~N}_{2}+\mathrm{O}_{2}$	1	Accept multiples or fractions of equation Ignore wrong state symbols Allow $\mathrm{C}_{8} \mathrm{H}_{18}+25 \mathrm{NO} \rightarrow 8 \mathrm{CO}_{2}+12.5 \mathrm{~N}_{2}+9 \mathrm{H}_{2} \mathrm{O}$

Qu	Part	Sub Part	Marking Guidance	Mark	Comments
5	a	i	$\mathrm{C}_{4} \mathrm{H}_{10}+6 \frac{1}{2} \mathrm{O}_{2} \rightarrow 4 \mathrm{CO}_{2}+5 \mathrm{H}_{2} \mathrm{O}$	1	Allow multiples
5	a	ii	insufficient oxygen / low temperature / poor mixing of butane and air	1	Allow insufficient air Allow lack or oxygen / air Do not allow no oxygen Not incomplete combustion
5 b i Sulfur dioxide $/ \mathrm{SO}_{2}$ 1 Allow sulfur trioxide/ SO_{3} (allow spelling of sulphur to be sulphur)					
5 b ii It is basic / the gas $\left(\mathrm{SO}_{2}\right)$ is acidic					
\begin{tabular}{\|l	l	l	l	}	
\hline
\end{tabular} | | | | | |

Qu	Part	$\begin{aligned} & \text { Sub } \\ & \text { Part } \end{aligned}$	Marking Guidance	Mark	Comments
6	a		(Different) boiling points	1	Ignore mp's, references to imf, different volatilities
6	b	i	Compound which have the same molecular formula but different structures/different structural formulae/different displayed formulae	1 1	Accept same no and type of atom for M1 But If same (chemical) formula M1 = 0 but allow M2 If empirical formula $C E=0 / 2$ M2 dependent on M1
6	b	ii	3-methylbut-1-ene	1	only ignore commas and hyphens
6	b	iii	 Allow any correct structure with a cyclic alkane	1	Do not allow or i.e with an H missing on one C

| 6 | c | $\mathrm{C}_{13} \mathrm{H}_{28}$ | 1 | only |
| :--- | :--- | :--- | :--- | :--- | :--- |
| Making plastics/ used to make polymers or
 polythene/ used to make antifreeze/ make
 ethanol/ ripening fruit/ any named additional
 polymer | 1 | not used as a plastic/polymer/antifreeze
 not just 'polymers' - we need to see that they are being made | | |

Qu	Part	Sub Part	Marking Guidance	Mark	Comments		
7	a		lodine - molecular Graphite- macromolecular/giant covalent/giant atomic	1	1		
7	b		Layers of (C atoms) Connected by covalent bonds within each layer Van der Waals forces/ IMF between layers/ weak forces between layers Many/strong covalent bonds need to be broken	1	1		Not covalent lattice
:---							
7							

Qu	Part	$\begin{aligned} & \text { Sub } \\ & \text { Part } \end{aligned}$	Marking Guidance	Mark	Comments
8	a		Mass number = number of protons + neutrons (in the nucleus/atom) 7 protons and 7 electrons 8 neutrons	1 1 1	Not in a substance or compound or element
8	b		Average/mean mass of (1) atom(s) (of an element) 1/12 mass of one atom of ${ }^{12} \mathrm{C}$ OR (Average) mass of one mole of atoms $1 / 12$ mass of one mole of ${ }^{12} \mathrm{C}$ OR (Weighted) average mass of all the isotopes $1 / 12$ mass of one atom of ${ }^{12} \mathrm{C}$ OR Average mass of an atom/isotope compared to C-12 on a scale in which an atom of C-12 has a mass of 12 $\begin{aligned} & \frac{(95.12 \times 14)+(4.88 \times 15)}{100} \\ & =14.05 \end{aligned}$	1 1	Accept answer in words Can have top line $x 12$ instead of bottom line $\div 12$ Allow $95.12+4.88$ instead of 100 If not to 2 d.p. then lose last mark Not 14.04

8	c		15 N is heavier $/{ }^{15} \mathrm{~N}$ has a bigger $\mathrm{m} / \mathrm{z} /$ different m / z values Electromagnet/ electric field/ magnet /accelerating potential or voltage / electric current	1	Not different no's of neutrons Not ionisation potential
8	d		No difference Same no of electrons (in outer orbital/shell/sub shell)/ same electron configuration	1	M2 dependent on M1 Not just electrons determine chemical properties Ignore protons

