

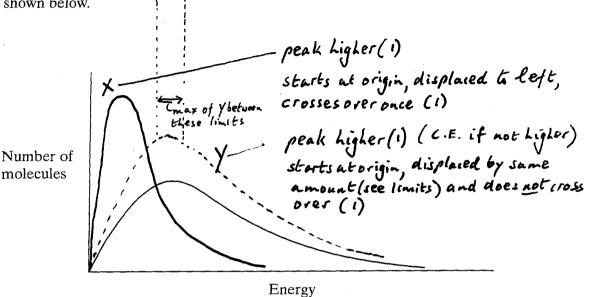
Mark scheme June 2003

GCE

Chemistry

Unit CHM2

Copyright © 2003 AQA and its licensors. All rights reserved.


SECTION A

Answer all questions in the spaces provided.

1 (a)	reducing agents present in the Blast Furnace. In each case, write an equation to show how the reducing agent reacts in the formation of iron.				
· · · · · · · · · · · · · · · · · · ·	Reducing agent 1 C(1) (or coke) (not	(oal)			
uation wh yeads on	Equation 3C+Fe ₂ O ₃ -> 3CO+2Fe(i) Callow Fe ₃ O ₄ and FeO) Reducing agent 2	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$			
rect agent	Equation $3co + fe_1 0 \rightarrow 3co_1 + 2$				
ilow wal	(again allow Fezox, FeO)	• (4 marks)			
(b)	Titanium is extracted from TiO ₂ using two separate processes, write an equation for the reaction occurri	ng. (1) C+Cl ₂			
	Equation 1 $TiO_2 + 2C + CI_2 \rightarrow TiC$	14+200 (1) balance with Til			
	Equation 1 TiO ₂ + 2C + Cl ₂ \rightarrow TiC (or +C \rightarrow Co ₂) Equation 2 TiCly + 4Na \rightarrow 4N (or 2Mg) (or 2	Maci + Ti (1) for Na orny (1) balance (4 marks)			
(c)	Suggest in general terms how metals can be extracted pollution problems can arise from such extractions.				
	Extraction form metal oxide (1)	or metal oxide implied)			
	Pollution problems SO ₂ (1) or oxides of S not	7 (1) (consequential on furnation of metal axide			
	Pollution problems SO2(1) or oxides of S not	SD, alone (and correct reducing) agent identified			
	any meneion of acia rain				
H	erosion caused by acid rain (1)	(Amarika)			
or	correct problem due to acid rain)	(4 marks)			

• •	r ac r ta	ains electrons (1) allow an electron expts electrons we reduction is gain of electrons sider the following redox reaction. do not allow mention of	(1 mark) but NOT OIL
, (b)	Con	sider the following redox reaction. do not allow mention of electron pair(s)	evenifo
		$SO_2(aq) + 2H_2O(l) + 2Ag^+(aq) \rightarrow 2Ag(s) + SO_4^{2-}(aq) + 4H^+(aq)$	
	(i)	Identify the oxidising agent and the reducing agent in this reaction.	
		Oxidising agent $A_g^+(1)$ (or $A_g^-(1)$) Reducing agent $SO_2(1)$ (or S^{VI}) not Sulphu	
		Reducing agent SO2(1) (or STI, not salpha	<i>r</i>)
	(ii)	Write a half-equation to show how sulphur dioxide is converted into su in aqueous solution.	_
		$SO_2 + 24, 0 \rightarrow SO_4^2 + 44^4 + 2e^-(1)$ (a) L.4.5) (or $H_2SO_4 + 24^4 + 2e^-$) penalise	no charge)
allow -	e on	L.4.5) (or H ₂ SO ₄ + 2H ⁺ + 2e ⁻) penalise	(3 marks) E once only
(c)		ions are oxidised to Fe^{3+} ions by ClO_3^- ions in acidic conditions. The ClO_3^- ions.	O ₃ ions are
	(i)	Write a half-equation for the oxidation of Fe^{2+} ions in this reaction. $Fe^{2+} \rightarrow Fe^{3+} + e^{-}$ (1)	
	(ii)	Deduce the oxidation state of chlorine in ClO_3 ions. 5 (1) $(\omega Z \omega + 5)$	
	(iii)	Write a half-equation for the reduction of ClO_3^- ions to Cl^- ions in acidic $ClO_3^- + 6H^+ + 6e^- \rightarrow Cl^- + 3H_2O_1$	
	(iv)	Hence, write an overall equation for the reaction.	
		C10; +6H++6Fe2+ -> C1+3420+6Fe	i i
		(much parts (i) to (it) independently)	(4 marks)
(d)	Write	e an equation to show how sulphur is removed from impure iron obtaine	d from the
	Fare	Furnace. Identify the oxidising agent in this reaction. Allow Fest with $M_g + S \rightarrow M_g S$ (1) (allow Ca	My -> Mg 5
			••••
	Oxid	ising agent	(2 marks)
	(only award mark if first answer given unless no find then can allow)	t answer
		then canadow)	
			Turn over

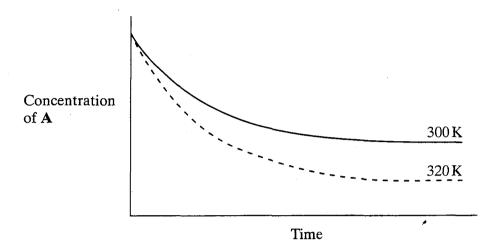
A sample of a gas was sealed into a flask at temperature T and pressure P. 3 The Maxwell-Boltzmann distribution of energies for the molecules in this sample is shown below.

- Using the axes above, sketch the curve that you would expect if this sample of gas at pressure P had been cooled. Label this curve X.
- Using the axes above, sketch the curve that you would expect if another sample of the same gas was sealed in the same flask at the original temperature, T, but at a (4 marks) higher pressure. Label this curve Y.
- Gas A decomposes slowly to form gases B and C. An equilibrium is established as shown by the following equation.

$$A(g) \rightleftharpoons B(g) + C(g)$$
 ΔH is positive

In terms of the behaviour of molecules, state what must happen before molecules of A can react to form B and C.

collide (1) _____ with sufficient energy (or E>Ea) (1)


(or with correct orientation)
Explain why the decomposition of A is faster at higher temperatures.

molecules (or particles) have more energy (or move faster) (1) more molecules (or collisions) have E > Ea (or sufficient energy) (1)
(or more collisions)

(4 marks)

molecules

The graphs below show how, starting from A alone, the concentration of A varies with (c) time at temperatures of 300 K and 320 K for the reversible reaction given in part (b).

Suggest why, as shown on the graphs, the concentration of A remains constant after a time.

(or rate forward reaction = rate backward)
Explain why, at 320 K, the concentration of A falls to a lower value compared with (ii) the reaction at 300 K.

reaction is endothermic (1) (or reverse reaction exothermic)

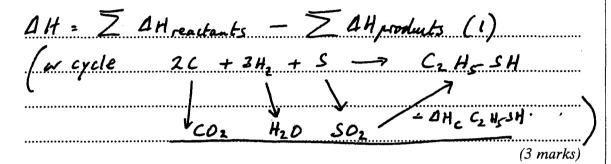
endothermic reaction favored (1)

(or reaction shifts to R

or mores forward

or more products formed)

(3 marks)


TURN OVER FOR THE NEXT QUESTION

			xide and water.	or the complete combus	1 1	•	
			C3H60+4	-0 , $\rightarrow 3co$.	+3H,D(1)	(1 mark)	
	(b)	heat				completely in oxygen. The are of 100 g of water from	
		(i)		umber of moles of prop	panone in the 1.4	5g. / allow oors	
			58 (1)		0.0230	(1) (allow consequence with wrong Mr)	
			/	; 1.45 C.E.)			
		(ii)	Calculate the he 293.1 K to 351.2	eat energy required to r	aise the tempera	ture of 100g of water from	
			(The specific he	eat capacity of water is	$4.18 \mathrm{JK^{-1}g^{-1}})$		
<i>/</i>		• •	Leat release	ed = mc1T		(it 1.45 med in place	at 1
ifu	ve i	0-1 x	418x51.8	= 100 x 4·18	× 58.1 (1)	(if 1.45 med in place 100, CE = 0 1100 24200 to 24300) Inoil decimal places to answer	0
alla		/2 /·	524°3	= 24300 J		snove decimal places	
W 7000			·	w 24.3hJ)	units tied	to answer	
		(iii)	Hence, calculate	e a value, in kJ mol ⁻¹ , for	the enthalpy of	combustion of propanone.	
		(111)					
		(111)		= -972 / hJ	mol") (a	llow +972	
	,	(111)	24-3	= -972 (hJ (1)	mol-1) (a a so units a	110w -968 to -973	
,	, (c)	In a s	24-3 0-0250 similar experimen	= -972 (hJ (1) allow a penalise	mol ⁻¹) (a a so units a wrong units bustion of butan	Now -968 to -973 Now $+972$ Now Conseq (5 marks) one, C_4H_8O , was found to	
	, (c)	In a s	24-3 0-0250 similar experiment 290 kJ mol ⁻¹ . A consumption of the suggest one real	= -972 (h) allow a penalise int, the enthalpy of comb data book value for the ason why the experime	mol ⁻¹) (a no units wrong units bustion of butan same reaction is ntal value is ver	Now -968 to -973 Now $+972$ Now Consey (5 marks) one, C ₄ H ₈ O, was found to $\Delta H_c^{\Theta} = -2430 \text{kJ mol}^{-1}$. The different from the data	
	, (c)	In a s be –1	24-3 0-0250 similar experiment 290 kJ mol ⁻¹ . A consideration of the book value.	= -972 (h) allow a penalise int, the enthalpy of comb data book value for the ason why the experime (A	mol ⁻¹) (a no units wrong units bustion of butan same reaction is ntal value is ver	Now -968 to -973 Now $+972$ Now Consey (5 marks) one, C ₄ H ₈ O, was found to $\Delta H_c^{\Phi} = -2430 \mathrm{kJ} \mathrm{mol}^{-1}$.	•~)
	, (c)	In a s be –1	24-3 0-0250 similar experiment 290 kJ mol ⁻¹ . A consideration of the suggest one real book value.	allow a penalise ont, the enthalpy of combidata book value for the ason why the experime	mol ⁻¹) (a no units wrong units bustion of butan same reaction is ntal value is ver o not-allow	Now -968 to -973 Now $+972$ Now Consey (5 marks) one, C_4H_8O , was found to $\Delta H_c^{\Theta} = -2430 \mathrm{kJ} \mathrm{mol}^{-1}$. The different from the data incomplete combustions.	•~)
	, (c)	In a s be –1	similar experiment 290 kJ mol ⁻¹ . A consideration of the second of the	= -972 (hJ allow penalise int, the enthalpy of coming data book value for the ason why the experime (A value of ΔH_c^{\bullet} for butance	mol ⁻¹) (a	Now -968 to -973 Now $+972$ Now $+972$ None, C_4H_8O , was found to $\Delta H_c^{\oplus} = -2430 \mathrm{kJ} \mathrm{mol}^{-1}$. The properties of the formation -1 incomplete combinst -1 incomplete to the formation)
	, (c)	In a s be -1 (i)	similar experiment 290 kJ mol ⁻¹ . A consideration of carbon dioxidificit referred to the consideration of the con	allow penalise ont, the enthalpy of combata book value for the ason why the experime (A) value of ΔH_c^{\odot} for butance de gas and water in the state formation of water in	mol ⁻¹) (a	Now -968 to -973 Now $+972$ Now $+972$ None, C_4H_8O , was found to $\Delta H_c^{\oplus} = -2430 \mathrm{kJ mol^{-1}}$. The different from the data incomplete combastion ow would this value difference? Explain your answer.	arts
	, (c)	In a sbe -1 (i) (ii)	similar experiment 290 kJ mol ⁻¹ . A consideration of carbon dioxidification of the consideration of the considera	allow penalise ont, the enthalpy of combata book value for the ason why the experime (A) walue of ΔH_c^{\odot} for butance de gas and water in the state formation of water and negative (A)	mol ⁻¹) (a ano units a wrong units bustion of butan same reaction is ntal value is ver o not-allow one (-2430 kJ mol gaseous state. H in the liquid stat	Now -968 to -973 Now $+972$ None, C_4H_8O , was found to $\Delta H_c^{\bullet} = -2430 \mathrm{kJ mol^{-1}}$. The different from the data incomplete combination ow would this value differer? Explain your answer. Once ΔH_c^{-1} (1) ΔH_c^{-1} (2) ΔH_c^{-1} (2) ΔH_c^{-1} (3) ΔH_c^{-1} (4) ΔH_c^{-1} (5) ΔH_c^{-1} (6) ΔH_c^{-1} (7) ΔH_c^{-1} (7) ΔH_c^{-1} (8) ΔH_c^{-1} (8) ΔH_c^{-1} (9) ΔH_c^{-1} (1) ΔH_c^{-1}	arh
	, (c)	In a sbe -1 (i) (ii)	similar experiment 290 kJ mol ⁻¹ . A consideration of carbon dioxidification of the consideration of the considera	allow penalise ont, the enthalpy of combata book value for the ason why the experime (A) walue of ΔH_c^{\odot} for butance de gas and water in the state formation of water and negative (A)	mol ⁻¹) (a ano units a wrong units bustion of butan same reaction is ntal value is ver o not-allow one (-2430 kJ mol gaseous state. H in the liquid stat	Now -968 to -973 Now $+972$ None, C_4H_8O , was found to $\Delta H_c^{\bullet} = -2430 \mathrm{kJ mol^{-1}}$. The different from the data incomplete combination ow would this value differer? Explain your answer. Once ΔH_c^{-1} (1) ΔH_c^{-1} (2) ΔH_c^{-1} (2) ΔH_c^{-1} (3) ΔH_c^{-1} (4) ΔH_c^{-1} (5) ΔH_c^{-1} (6) ΔH_c^{-1} (7) ΔH_c^{-1} (7) ΔH_c^{-1} (8) ΔH_c^{-1} (8) ΔH_c^{-1} (9) ΔH_c^{-1} (1) ΔH_c^{-1}	arh
	, (c)	In a sbe -1 (i) (ii)	similar experiment 290 kJ mol ⁻¹ . A consideration of carbon dioxidification of the consideration of the considera	allow penalise ont, the enthalpy of combata book value for the ason why the experime (A) walue of ΔH_c^{\odot} for butance de gas and water in the state formation of water and negative (A)	mol ⁻¹) (a ano units a wrong units bustion of butan same reaction is ntal value is ver o not-allow one (-2430 kJ mol gaseous state. H in the liquid stat	Now -968 to -973 Now $+972$ None, C_4H_8O , was found to $\Delta H_c^{\bullet} = -2430 \mathrm{kJ mol^{-1}}$. The different from the data incomplete combination ow would this value differer? Explain your answer. Once ΔH_c^{-1} (1) ΔH_c^{-1} (2) ΔH_c^{-1} (2) ΔH_c^{-1} (3) ΔH_c^{-1} (4) ΔH_c^{-1} (5) ΔH_c^{-1} (6) ΔH_c^{-1} (7) ΔH_c^{-1} (7) ΔH_c^{-1} (8) ΔH_c^{-1} (8) ΔH_c^{-1} (9) ΔH_c^{-1} (1) ΔH_c^{-1}	arh
	, (c)	In a sbe -1 (i) (ii)	similar experiment 290 kJ mol ⁻¹ . A consideration of carbon dioxidification of the consideration of the considera	allow penalise ont, the enthalpy of combata book value for the ason why the experime (A) walue of ΔH_c^{\odot} for butance de gas and water in the state formation of water and negative (A)	mol ⁻¹) (a ano units a wrong units bustion of butan same reaction is ntal value is ver o not-allow one (-2430 kJ mol gaseous state. H in the liquid stat	Now -968 to -973 Now $+972$ Now $+972$ None, C_4H_8O , was found to $\Delta H_c^{\oplus} = -2430 \mathrm{kJ mol^{-1}}$. The different from the data incomplete combastion ow would this value difference? Explain your answer.	arh

(d) Calculate a value for the standard enthalpy of formation for liquid ethanethiol, C_2H_5SH . Use the equation given below and enthalpy of combustion data from the following table.

Substance	C ₂ H ₅ SH(1)	C(s)	H ₂ (g)	S(s)
$\Delta H_{\rm c}^{\Theta}/{\rm kJmol}^{-1}$	-1170	-394	-286	-297

$$2C(s) + 3H_2(g) + S(s) \rightarrow C_2H_5SH(l)$$

$$= (2 \times -394) + (3 \times -286) + (-297) - (-1170) (1)$$

$$= -773 (1) ignore units even if wrong.$$
(allow $1/3$ for $+773$).

TURN OVER FOR THE NEXT QUESTION

CHM2 June 2003

Q5 marking scheme

(a) increases from fluorine to iodine (1)

sizes of molecules increase (1) (9.0.L. mark)
(or molecules have more electrons or mass of molecules increases)

Magnitude of intermolecular forces or VdW forces increase (1) (or more VdW forces)

More energy required to separate molecules (or particles) (1) (or more energy to break intermolecular forces) ar intermolecular forces more difficult to break

(b) with NaCl white ppt (1) note, if ppt clearly refers to wrong soluble in ammonia (1) substance (eq Naci) then C:E = 0

with NaBr cream (or off white or beige) ppt (1) partially soluble (or insoluble) in ammonia (1)

(ignore references to conc ammonia)

(if obviously added silver nitrate mixed with ammonia allow: NaCl: no change (2) NaBr: cream ppt (2))

(c) oxidising ability decreases from chlorine to iodine (or down the Group) (1)

 $Cl_2 + 2Br^2 \rightarrow 2Cl^2 + Br_2(1)$ (allow use of NaBr, HBr etc)

Br₂ red-brown (or yellow or orange) liquid (or solution but not solid)(1)

 $Cl_2 + 2\Gamma \rightarrow 2C\Gamma + I_2$ (1) (allow use of NaBr etc, penalise HI once only)

I₂ brown solution/black solid (1) (do not allow any reference to purple)

 $Br_2 + 2I^- \rightarrow 2Br^- + I_2(1)$

Yellow/orange/red-brown/brown solution goes brown/darker brown solution /blacksolid (1)

7 15

4