

General Certificate of Education

Chemistry 5421

CHM4 Further Physical and Inorganic Chemistry

Mark Scheme

June examination - 2009 series

Mark schemes are prepared by the Principal Examiner and considered, together with the relevant questions, by a panel of subject teachers. This mark scheme includes any amendments made at the standardisation meeting attended by all examiners and is the scheme which was used by them in this examination. The standardisation meeting ensures that the mark scheme covers the candidates' responses to questions and that every examiner understands and applies it in the same correct way. As preparation for the standardisation meeting each examiner analyses a number of candidates' scripts: alternative answers not already covered by the mark scheme are discussed at the meeting and legislated for. If, after this meeting, examiners encounter unusual answers which have not been discussed at the meeting they are required to refer these to the Principal Examiner.

It must be stressed that a mark scheme is a working document, in many cases further developed and expanded on the basis of candidates' reactions to a particular paper. Assumptions about future mark schemes on the basis of one year's document should be avoided; whilst the guiding principles of assessment remain constant, details will change, depending on the content of a particular examination paper.

Further copies of this Mark Scheme are available to download from the AQA Website: www.aqa.org.uk

Copyright © 2009 AQA and its licensors. All rights reserved.

COPYRIGHT

AQA retains the copyright on all its publications. However, registered centres for AQA are permitted to copy material from this booklet for their own internal use, with the following important exception: AQA cannot give permission to centres to photocopy any material that is acknowledged to a third party even for internal use within the centre.

Set and published by the Assessment and Qualifications Alliance.

SECTION A

Q	Part	Sub Part	Marking Guidance	Mark	Comments
1	(a)	(i)	Expt 2 1.8×10^{-3} or $\frac{6.75}{k}$	1	If k used for the calculation: if rounded to 3.8×10^3 allow answer 1.78×10^3
			Expt 3 8.1×10^{-5} or $k \times (2.16 \times 10^{-5})$	10 ⁻⁸) 1	If k used for the calculation: if rounded to 3.8×10^3 allow answer 8.2×10^{-5} and if calc rounded to (3.8×10^3) $(2.2 \times 10^{-8}) = 8.4 \times 10^{-5}$
			Expt 4 6.7×10^{-4} or $\sqrt{(1.67 \times 10^{-4})^{-3}}$ or 7×10^{-4}	10 ⁻³ /k) 1	If k used for the calculation: if rounded to 3.8×10^3 allow answer 6.6×10^{-4}
1	(a)	(ii)	$k = \frac{\text{rate}}{[P][Q]^2} = \frac{1.8 \times 10^{-5}}{(1.2 \times 10^{-3})(2.0 \times 10^{-3})^2}$ $3750 \text{ or } 3.75 \times 10^3 \text{ or } 3.8 \times 10^3$ $\text{mol}^{-2} \text{dm}^6 \text{s}^{-1}$	1 1	Mark is for insertion of numbers If upside down, score only units mark consequential on their expression for k If <i>k</i> is wrong, check whether apparently wrong answers in part(i) are correct conseq to wrong <i>k</i> . Any order
1	(b)		Horizontal straight line	1	Be generous, they need not use a ruler.

Q	Part	Sub Part	Marking Guidance	Mark	Comments
2	(a)		The Statement : mol fraction = $\frac{mol \ NO_2}{total \ moles}$		either in this form or using their numbers, gets max 1 if answer to par (a) is wrong because of wrong no of moles (CE) of either NO ₂ or N ₂ O ₄ or total
			$mol N_2O_4 = 1.20 - \frac{1}{2}(0.36) = 1.0(2)$	M1	
			total moles = 1.0(2) + 0.36 = 1.36 or 1.38 or 1.4	M2	If AE earlier, this mark is for (previous answer + 0.36)
			mol fraction of NO ₂ = $\frac{0.36}{1.38}$ = 0.26 allow $\frac{6}{23}$	М3	If AE earlier, this mark is for $\frac{0.36}{previous \ answer}$
			allow (0.36/1.36) = 0.264 to (0.36/1.4) = 0.257		previous unswer
2	(b)	(i)	pp = mol fract × Total Pressure	1	Or allow symbols
2	(b)	(ii)	$ppNO_2 = 0.28 \times 180 = 50(.4)$	1	Mark for answer
			$ppN_2O_4 = 180 - 50.4 = 129.6 \text{ or } 130$	1	Mark for answer = (180 – previous answer)
2	(c)	(i)	$K_p = \frac{(p_NO_2)^2}{}$	1	if K _p wrong, allow units mark only conseq to their K _p
			PN ₂ O ₄		penalise [] but mark on;
2	(c)	(ii)	$\frac{49.6^2}{}$	1	
			132.0 18.6 or 19	1	
			kPa	1	conseq on their Kp allow mol dm ⁻³ if K given with []

Penalise pH to <2dp> once in the paper

Q	Part	Sub Part	Marking Guidance	Mark	Comments
3	(a)	(i)	$pH = -log[H^{\dagger}]$	1	Penalise () once in question
3	(a)	(ii)	mol HCl = $(5.0 \times 10^{-3}) \times 0.135 = 6.75 \times 10^{-4} \text{ (or } 6.8 \times 10^{-4})$	1	Mark is for answer – if wrong, no further mark in part (a)(ii)
			pH = 3.17	1	Lose this mark if moles divided by 0.995
3	(b)	(i)	$K_a = \frac{[H^+][CH_3CHClCOO^-]}{[CH_3CHClCOOH]}$ allow molecular formulae or minor slip in formulae	M1	Penalise () once in question Penalise [H ⁺] ² /[CH ₃ CHClCOOH] but this can score M2 Not allow [H ⁺][A ⁻]/[HA]
3	(b)	(ii)	$\frac{[H^{+}]^{2}}{[CH_{3}CHCICOOH]}$ $[H^{+}] = \sqrt{(1.48 \times 10^{-3} \times 0.350)} = 2.28 \times 10^{-2}$ $pH = 1.64 \qquad \text{(can give three ticks here for (b)(ii))}$	M2 M3 M4	Allow $[H^{+}]^{2}/[HA]$ or minor slip in formula Mark for 2.28×10^{-2} (allow 2.3×10^{-2} - this still gives 1.64) use of quadratic gives 1.66 3.29 gets 2 marks if $$ visible in calculation, but square root not taken (AE), else gets 1
3	(c)		Decrease but mark on if incorrect increase T increases dissociation /favours forward reaction / moves to right / favours endothermic reaction ∴ increases [H ⁺] or more H ⁺	1 1 1	

3	(d)	Optical	Optical		If wrong type, no further marks but mark on from just stereoisomerism
		(plane) polarised light or polarimet	(plane) polarised light or polarimeter		
		(light) rotated in opposite (or wtte)		1	Not just in different directions
			0.10		
3	(e)		pKa = $4.69 - \log\left(\frac{0.10}{0.15}\right)$	M1	If $[H^{\dagger}]$ wrong, due to CE, allow numbers in expression for one mark out of three for M2
		$K_a = \frac{(2.04 \times 10^{-5})(0.10)}{(0.15)}$ or	pKa = 4.86 or 4.87	M2	If 0.10/0.15 upside down or if moles added to or subtracted from salt or acid, can only score M1
		= 1.36×10^{-5} (allow 1.3×10^{-5}	= 1.36×10^{-5} (allow 1.3×10^{-5} to 1.4×10^{-5})		ignore units

Q	Part	Sub Part	Marking Guidance	Mark	Comments
4	(a)	(i)	proton acceptor	1	
4	(a)	(ii)	butylamine alkyl group is electron releasing/ increases e density on N/has (+) inductive effect	1	Or formula - if wrong, no further marks in (a)(ii)
			lone pair more available	1	
4	(b)		CH ₃ + -	1	Allow C ₂ H ₅
4	(c)	(i)	$CH_3(CH_2)_{17}N(CH_3)_3$ (Br)	1	Mark part (ii) independent of part (i)
4	(c)	(ii)	quaternary ammonium (salt) or tetraalkylammonium (salt) (QOL) (cationic) surfactant/ fabric softener/water repellents / fungicides / emulsifiers/ paper softeners/antistatic agents/corrosion inhibitors/ disinfectants/antistatic agents (e.g. in shampoo)/hair conditioners /spermicidal jellies/detergents	1	Or quaternary alkylammonium (salt)
4	(d)	(i)	N-methylethanamide	1	Allow N-methylacetamide

			$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		Chemistry - AQA GCE Mark Scheme 2009 June series
4	(d)	(ii)	(Nucleophilic) addition-elimination (CH ₃) NH for 3 arrows and lone pair	1 4	Penalise electrophilic M2 not allowed independent of M1, but allow M1 for correct attack on C+ +C=O loses M2 only allow M4 after correct or very close M3 lose M4 for Cl ⁻ removing H ⁺ in mechanism, but ignore HCl as a product
4	(e)	(i)	CH ₃ H ₃ N—C—COO	1	
4	(e)	(ii)	СН ₃ Н ₃ N—С—СООН Н	1	allow -CO ₂ H don't penalise position of + on NH ₃
4	(e)	(iii)	H_2N — C — $COOCH_3$ + or H_3N	1	Allow -CO ₂ CH ₃

Q	Part	Sub Part	Marking Guidance	Mark	Comments
5	(a)	(i)	HCI or HBr ignore g aq conc etc AlCl ₃ or AlBr ₃ FeCl ₃ FeBr ₃ ignore g aq conc etc (H2C) CH ₂ + HCl + AlCl ₃ M2 CH ₃ CH ₂ + AlCl (H3CH ₂ + AlCl ₃ M2 CH ₃ CH ₂ + AlCl	1 1 1	The two substances can be in either order
5	(a)	(ii)	electrophilic substitutionH CH2CH3 CH2CH3 Allow Kekule structures Be lenient on position of + in electrophile unless definitely on CH3	1 3	Not Friedel Crafts M1 arrow from within hexagon to C of CH ₂ or to + on C of CH ₂ horseshoe must not extend beyond C2 to C6 but can be smaller + not too close to C1 M3 arrow into hexagon unless Kekule allow M3 arrow independent of M2 structure ignore base removing H in M3
5	(b)		chloroethane usually made from ethene or more difficult to make cH ₂ cH ₂ ethene is a (by)product of cracking	1	Not just cheaper - indication of cost must be qualified Not just ethene is more readily available
5	(c)		Addition or radical or step (QOL)	1	Ignore <i>n</i> or brackets, but must have trailing bonds Not additional

Q	Part	Sub Part	Marking Guidance	Mark	Comments	
6	(a)		$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1 2	Ignore 1,6 but penalise other numbers NOT C_4H_8 or C_6H_{12}	
			CH ₃ CH ₃ HOOC—C——C——COOH			4
6	(b)		н н	1	Allow CO₂H	
			HOOC—CH ₂ —C			1
6	(c)		O—CH ₂ CH ₂ CH ₃	1		
			or –C ₃ H ₇ or – CH(CH ₃) ₂			1
6	(d)		2 peaks	1		
			a 2.1 – 2.6 or value within the range	1		
			b 3.7 – 4.1 or value within the range	1		3

6	(e)	c doublet or duplet d doublet or duplet	1		2
6	(f)	$\begin{array}{c} \text{CH}_3\text{CH}_2\text{O}^+ \text{ or } \text{C}_4^0\text{H}_5\text{O}_1^0\\ [\text{H}_3\text{CH}_2\text{C}-\text{O}-\text{C}-\text{C}-\text{O}-\text{CH}_2\text{CH}_3]^{++} &\to \text{CH}_3\text{CH}_2^{++} &+ \\ \text{OCOCOOCH}_2\text{CH}_3\\ & \text{(1) for Molecular ion} & \text{(1) for RHS of equation} \\ & \text{Allow + on CH}_3\text{CH}_2 & \text{or dot on radical anywhere} \\ & \text{allow (COO)}_2\text{C}_2\text{H}_5 & \text{etc} \end{array}$	1 2	+ on O or outside brackets Allow molecular formulae $ [C_6H_{10}O_4]^{+} \ \rightarrow \ C_2H_5^{+} \ + \ [C_4H_5O_4]^{-} $	3

Q	Part	Sub Part	Marking Guid	lance	Mark	Comments
7	,			or CH ₃ CH=CH ₂ loses the mark	1	Ignore C ₃ H ₆
				-ol or 1- propanol or CH₃CH₂CH₂OH	1	Not propan-2-ol nor C ₃ H ₇ OH
			contradiction	loses the mark		Ignore propanol if correct structure also give
						If reagent wrong or missing, no mark for conditions, but allow conditions following minor slip in formula
						Ignore temperature throughout
			Reaction 1	KOH or NaOH	1	Any mention of conc sulphuric loses both reagent and condition marks
						Incomplete reagent e.g. OH penalise once but can score conditions marks in both Reaction 1 and 3
				(Hot) alcoholic or ethanolic	1	Not ethanoic
			Reaction 2	HBr or KBr/ H_2SO_4 (with or without conc or dil)	1	Not KBr alone ignore extra (conc) H ₂ SO ₄
			Reaction 3	KOH or NaOH	1	Any mention of conc sulphuric loses both reagent and condition marks
				(Warm) aqueous	1	
			Reaction 4	$\rm K_2Cr_2O_7/acidified$ or $\rm H^+$ or $\rm KMnO_4/acidified$ or $\rm H^+$	1	Not Fehlings/Tollens penalise incomplete reagent again
				reflux	1	

Q	Part	Sub Part	Marking Guidance		Comments	
8	(a)		mol HCl = $\frac{20.8}{10^3} \times 0.150 = 3.12 \times 10^{-3}$ allow 3 10^{-3}	3.1 × M1	Mark for answer Treat $\frac{25}{10^3}$ × 0.150 as AE and allow conseq M2 and M3 03	
			$[CO_3^2] = (3.12 \times 10^{-3}) \times 10^3/25$	M2	Mark for previous answer ×1000/25	
			= 0.125 (mol dm ⁻³) or 0.13 0.124 0.12	or M3		3
8	(b)		2nd volume/amount HCI is used to react with			
			(original HCO ₃ ⁻) + (HCO ₃ ⁻ formed in Reaction 1)			
					If no subtraction, allow max 1 for mol HCl or H ⁺ added in second step	
			vol HCl for original $HCO_3^- = 33.25 - 20.80 = 12.45 \text{ cm}^3$		or second mol HCl added = $\frac{33.25}{10^3} \times 0.150$ = 4.99×10^{-3} or $5(.0) \times 10^{-3}$	
			mol HCl = $(12.45 \times 10^{-3}) \times 0.150$ = 1.87×10^{-3} = mol HCO ₃ ⁻ in 25 cm ³	M6	or Mol HCl used with $HCO_3^- = 4.99 \times 10^{-3} - 3.12 \times 10^{-3} = 1.87 \times 10^{-3}$	
			$[HCO_3^-] = (1.87 \times 10^{-3}) \times 1000/25 = 0.0748 \text{ or } 0.0748$	0.075 M7		4