General Certificate of Education

Chemistry 6421

CHM4 Further Physical and Organic Chemistry

Mark Scheme

2007 examination – January series
Mark schemes are prepared by the Principal Examiner and considered, together with the relevant questions, by a panel of subject teachers. This mark scheme includes any amendments made at the standardisation meeting attended by all examiners and is the scheme which was used by them in this examination. The standardisation meeting ensures that the mark scheme covers the candidates' responses to questions and that every examiner understands and applies it in the same correct way. As preparation for the standardisation meeting each examiner analyses a number of candidates’ scripts: alternative answers not already covered by the mark scheme are discussed at the meeting and legislated for. If, after this meeting, examiners encounter unusual answers which have not been discussed at the meeting they are required to refer these to the Principal Examiner.

It must be stressed that a mark scheme is a working document, in many cases further developed and expanded on the basis of candidates’ reactions to a particular paper. Assumptions about future mark schemes on the basis of one year’s document should be avoided; whilst the guiding principles of assessment remain constant, details will change, depending on the content of a particular examination paper.

Further copies of this Mark Scheme are available to download from the AQA Website: www.aqa.org.uk

Copyright © 2007 AQA and its licensors. All rights reserved.

COPYRIGHT
AQA retains the copyright on all its publications. However, registered centres for AQA are permitted to copy material from this booklet for their own internal use, with the following important exception: AQA cannot give permission to centres to photocopy any material that is acknowledged to a third party even for internal use within the centre.

Set and published by the Assessment and Qualifications Alliance.
Question 1

(a)
(i) 2
(ii) 1
(iii) 0

(b) \(k = \frac{\text{rate}/[D]^2[E]}{(0.84)^2(1.16)} \)
\(= 1.0(2) \times 10^{-3} \) to \(1.05 \times 10^{-3} \)
\(\text{mol}^{-2}\text{dm}^6\text{s}^{-1} \)

Total 6 marks

Question 2

(a) \(\text{mol Cl}_2 = 1.2(0) \)
\(\text{total mol} = 3.8(0) \)
no consequential marks on wrong mol Cl\(_2\) in (a) unless obvious AE

(b) mol fraction PCl\(_5\)
\(= \frac{1.4}{3.8} \)
(1) = 0.368 (or 0.37)
allow \(\frac{1.4}{\text{total mol}} \) from (a)

mol fraction Cl\(_2\)
\(= \frac{1.2}{3.8} \)
(1) = 0.316 (or 0.32)
allow \(\frac{\text{mol Cl}_2}{\text{total mol}} \) from (a)

(c) (i) (pp =) mol fraction \(\times \) total P
or \(p_A = x_A \times P_T \)

(ii) pp PCl\(_5\)
\(= 0.368 \times 125 = 46(0) \)
\(0.37 \times 125 = 46.3 \)

pp Cl\(_2\)
\(= 0.316 \times 125 = 39.47 \)
\(0.32 \times 125 = 40(0) \)

Or conseq on (b)

(d) \(K_p = \frac{p_{PCl_5} \times p_{Cl_2}}{p_{PCl_5}} \)
not numbers
penalise [] but mark on allow extra
mark on all P () brackets needs

(e) (i) no effect
(ii) increase

(f) \(\frac{42.6^2}{36.9} = 49.2 \)
(4.92 \times 10^4 tied to Pa below)

Total Mark 13
Question 3

(a) (i) proton donor - alone 1
(ii) completely dissociated 1

(b) (i) \[7.05 \times 10^{-3} \times 10^3/50 = 0.14(1)\] 1
(ii) \[\log [H^+] \text{ or } \log 1/[H^+]\] 1
(iii) 0.85 or conseq on (b) penalise dp of final answer <2> once per paper 1
(iv) M1 pH = 1 \[[H^+] = 0.1(0) \text{ (mol dm}^{-3}\text{) } \text{ if wrong, max 1 for M2 } 1\]
M2 \[(7.05 \times 10^{-3})/0.10\] addition or subtraction loses M2 1
M3 vol = \[7.05 \times 10^{-2}\text{ _dm}^3\text{ or 70.5_cm}^3\] Units tied (allow 71 but not 70) 1

(c) (i) \[K_a = \frac{[H^+][X^-]}{[HX]} \text{ not } \frac{[H^+]^2}{[HX]} \text{ but mark on } 1\]
allow HA etc

(ii) \[K_a = \frac{[H^+]^2}{[HX]} \text{ If } K_a \text{ expression wrong or missing: max 1 in part (ii) for correct calculation of pH from their } [H^+] \] 1

\[
[H^+] = \sqrt{6.10 \times 10^{-5} \times 0.255} \text{ or } \sqrt{(Ka \times [HX])}
\]
\[= \sqrt{1.55 \times 10^{-5}} = 3.94 \times 10^{-3}\] 1
pH = 2.40 (if write \[\sqrt{\text{but forget to take sq rt this gives pH = 4.81 which can get 2 marks}}\] 1
rounded to \[3.9 \times 10^{-3} \text{ allow 2.41} \text{ max} \]

(d) (i) \[[H^+] = 1.66 \times 10^{-4}\] 1
\[K_a = \frac{(1.66\times10^{-4})(2.98\times10^{-3})}{(6.85\times10^{-3})} \text{ if wrong method, no further marks in d(i)}\]
\[= 7.22 \times 10^{-5}\]
pK_a = 4.14 1

(ii) effect = none/ negligible/v small decrease/v small change; not just pH goes down -- must be v small decrease
M1 Salt or Y^- reacts with extra H^+ or
equm HY \Longrightarrow H^+ + Y^- shifts to LHS or
H^+ is removed as eqm shifts to LHS
M2 \[\therefore[H^+] \text{ or ratio } [HY]/[Y^-] \text{ or ratio } [Y^-]/[HY] \text{ remains almost constant only gained if M1 correct} \] 1

Total 19 marks
Question 4

(a) \[
\begin{align*}
\text{CH}_3 & \quad \text{Si} & \quad \text{CH}_3 \\
\text{H}_3\text{C} & \quad \text{Si} & \quad \text{CH}_3 \\
\text{CH}_3 & & \\
\end{align*}
\]
allow \(\text{Si(CH}_3)_4 \)\n
inert/non toxic/volatile or low bp \(\text{Any} \)
ignore cheap single intense peak/signal upfield of others/(protons)very shielded \(\text{2} \)

(b) \(\text{2} \) \(\text{1} \)

(c) (i) \(a = \text{quartet or 4} \) allow explained alternative interpretation of splitting \(\text{by} \) \(\text{1} \)
\(b = \text{triplet or 3} \) rather than \(\text{of these H} \)
\(a \text{ causes triplet} \) \(b \text{ causes triplet} 1 \)

(ii) \(3230 – 3550 \text{ (cm}^{-1} \text{)} \) \(\text{1} \)

(d) (i) butan(e)-1,4-diol or 1,4- butan(e)diol or 1,4-dihydroxybutane \(\text{1} \)
(ii) condensation or addition- elimination
\[
\begin{align*}
\text{O} & \quad \text{CH}_2 \quad \text{O} & \quad \text{CH}_2 \quad \text{O} \quad \text{C} \\
\text{(CH}_2)_3 & & & & \text{3} & & \text{O} \\
\end{align*}
\]
must have both carbon chains and ester group to score at all ester group \((1) \)
\((\text{CH}_2)_3 \text{ (1)} \) but \(-1 \text{ for each error} \) \(\text{1} \)

(e) (i) \(6(\text{H}) \) or \(2 \times \text{CH}_3 \text{ groups} \) \(\text{1} \)
(ii) \(\text{(R)OCH}_3 \) \(\text{1} \)
(iii) \(\text{CH}_3(\text{–} \text{CH}(-\text{O}) \) penalise any extra \(\text{H} \) Not \(\text{R} \) attached to \(\text{CH} \) \(\text{1} \)
(iv) \[
\begin{align*}
\text{H} & \quad \text{C} & \quad \text{OCH}_3 \\
\text{H}_3\text{C} & & \text{OCH}_3 \\
\end{align*}
\]

Total \(15 \text{ marks} \)
Question 5

(a) 2-aminopropanoic acid or 2-aminopropionic acid 1

(b) (i) \[
\begin{array}{c}
\text{H}_2\text{N} \quad \text{C} \quad \text{C} \quad \text{N} \quad \text{C} \\
\text{H} \quad \text{O} \quad \text{H} \quad \text{H}
\end{array}
\]

Do NOT allow -CONH- or -COHN-

allow zwitterion

Not repeating unit

(ii) \[
\begin{array}{c}
\text{H}_2\text{N} \quad \text{C} \quad \text{COOCH(CH}_3\text{)}_2 \\
\text{H}
\end{array}
\]

allow \(+ \text{H}_3\text{N} \) or \(+ \text{H}_3\text{N} \)

not \(\text{C}_3\text{H}_7 \)

(iii) \[
\begin{array}{c}
\text{H}_3\text{C} \quad \text{C} \quad \text{N} \quad \text{C} \quad \text{COOH} \\
\text{O} \quad \text{H} \quad \text{H}
\end{array}
\]

(nucleophilic) addition-elimination 1

(c) (i) \[
\begin{array}{c}
\text{X} \quad \text{C} \quad \text{COOH} \\
\text{H}_3\text{N} \quad \text{H}
\end{array}
\]

allow \(^+\text{H}_3\text{N} \) 1

(ii) \[
\begin{array}{c}
\text{Y} \quad \text{C} \quad \text{COO}^- \\
\text{H}_3\text{N} \quad \text{H}
\end{array}
\]

if only mistake in \(\text{X} \), is e.g. \(^+\text{H}_2\text{N} \) and this is repeated in \(\text{Y} \) but otherwise \(\text{Y} \) shows \(\text{COO}^- \) i.e. the candidate has realised the change from \(\text{COOH} \) to as \(\text{pH} \) rises, allow one for \(\text{Y} \) (ecf)

Total 7 marks
Question 6

(a) \[\text{CH}_3\text{COCl} + \text{AlCl}_3 \rightarrow \text{CH}_3\text{CO}^+ + \text{AlCl}_4^- \] (1)

NO MARK for acylium ion

Allow FeCl₃

position of + on electrophile can be on O or C or outside []

penalise wrong curly arrow in the equation or lone pair on AlCl₃ else ignore

electrophilic substitution **NOT F/C acylation**

(b) (i) Nucleophilic addition

(ii) optically inactive or equal mixture of (both) enantiomers/optical isomers

planar carbonyl group (stated or drawn) Not planar molecule

attack from above or below or either side (stated or drawn)

(c) 2-methylpentan-3-one no e in …..pentan-3-…

\[\text{CH}_3\text{CH}_2\text{CO} + \] can be on O or C or outside [] but not on alkyls

[CH₃CH₂COC H(CH₃)₂]⁺ OR

allow [C₆H₁₂O]⁺. Dot can be anywhere allow C₂H₅ or C₃H₇

Total 6

Total 8

Total 5

Total 19 marks
Question 7

Incomplete reagent (e.g. carbonate) loses reagent mark, but mark on
If more than one test **including a different test on P and Q**; give worst mark
if either reagent wrong - no marks at all
For “no reaction” allow “nothing”

(a) (i) reagent \(\text{Na}_2\text{CO}_3/ \text{NaHCO}_3 \) named carbonate

<table>
<thead>
<tr>
<th>P</th>
<th>No reaction</th>
<th>No rxn</th>
<th>No rxn</th>
<th>turns green</th>
<th>colourless or brown</th>
</tr>
</thead>
</table>

| Q | effervescence or CO\(_2\) or dissolves | fumes effervescence or H\(_2\) or dissolves | no rxn | stays orange | stays purple |

(ii) reagent \(\text{H}_2\text{O} \) \(\text{AgNO}_3 \) \(\text{Na}_2\text{CO}_3/ \text{NaHCO}_3 \) named carbonate

<table>
<thead>
<tr>
<th>R</th>
<th>(misty) fumes (White) ppt or rapid_ppt</th>
<th>effervescence or CO(_2) or dissolves</th>
<th>Smell fumes</th>
<th>red</th>
</tr>
</thead>
</table>

| S | no rxn | no ppt or slow_ppt | no rxn | No rxn | No rxn | No rxn |

No marks after wrong reagent in (ii) even if aq 6 marks

(b) (i) Sn or Fe/HCl conc or dil or neither ignore extra \(\text{NaOH} \) 1
Sn or Fe/H\(_2\)SO\(_4\) dil or neither not \(\text{HNO}_3 \) 1
H\(_2\)/Ni not \(\text{NaBH}_4 \) \(\text{LiAlH}_4 \) \(\text{Na/C}_2\text{H}_5\text{OH} \) 1

\[
\begin{align*}
\text{C}_6\text{H}_5\text{NO}_2 + 6[\text{H}] & \rightarrow \text{C}_6\text{H}_5\text{NH}_2 + 2\text{H}_2\text{O} \\
\text{C}_6\text{H}_5 & \text{or } 3\text{H}_2 \quad \text{organic species (1) balanced (1)}
\end{align*}
\]

(ii) nucleophilic substitution 1

Be lenient on position of + 1

5 marks

Total 11