General Certificate of Education

Chemistry (6421)

CHM4 Further Physical and Organic Chemistry

Mark Scheme

2008 examination - January series
Mark schemes are prepared by the Principal Examiner and considered, together with the relevant questions, by a panel of subject teachers. This mark scheme includes any amendments made at the standardisation meeting attended by all examiners and is the scheme which was used by them in this examination. The standardisation meeting ensures that the mark scheme covers the candidates’ responses to questions and that every examiner understands and applies it in the same correct way. As preparation for the standardisation meeting each examiner analyses a number of candidates’ scripts; alternative answers not already covered by the mark scheme are discussed at the meeting and legislated for. If, after this meeting, examiners encounter unusual answers which have not been discussed at the meeting they are required to refer these to the Principal Examiner.

It must be stressed that a mark scheme is a working document, in many cases further developed and expanded on the basis of candidates’ reactions to a particular paper. Assumptions about future mark schemes on the basis of one year’s document should be avoided; whilst the guiding principles of assessment remain constant, details will change, depending on the content of a particular examination paper.

Further copies of this Mark Scheme are available to download from the AQA Website: www.aqa.org.uk

Copyright © 2008 AQA and its licensors. All rights reserved.

COPYRIGHT
AQA retains the copyright on all its publications. However, registered centres for AQA are permitted to copy material from this booklet for their own internal use, with the following important exception: AQA cannot give permission to centres to photocopy any material that is acknowledged to a third party even for internal use within the centre.

Set and published by the Assessment and Qualifications Alliance.
Question 1

(a)
(i) \(K_w = [H^+][OH^-] \) if wrong only score in (ii) and (iii) except if \([H_2O] = 1 \) * 1

(ii) 2.34 \times 10^{-7}
penalise 2.3 \times 10^{-7} i.e. 2 sfs once in the question 1

(iii) 2.34 \times 10^{-7}
conseq = (ii) 1

(iv) 5.48 to 5.50 \times 10^{-14}
conseq = (ii) \times (iii) 1

*if \([H_2O] = 1 \) can score for correct answer here

(b)
\[[H^+] = \frac{10^{-14}}{0.136} \] (1) = 7.35 \times 10^{-14}
OR pOH = 0.87 1

pH = 13.13 1

Total 6

Question 2

(a)
M1 \(K_a = \frac{[H^+]^2}{[CH_3CH_2COOH]} \) if wrong, score max 1 for M3 from their \([H^+] \) 1

penalise round brackets once in the qu

M2 \([H^+] = \sqrt{(1.35 \times 10^{-5} \times 0.169)} \) (1) = 1.51 \times 10^{-3} 1

If \(\sqrt{\text{visible}} \) can score 2 for 5.64

M3 pH = 2.82
allow 1 for correct pH from their \([H^+] \) 1

(b)
(i) CH_3CH_2COOH + NaOH \rightarrow CH_3CH_2COONa + H_2O
penalise 1

OR CH_3CH_2COOH + OH^- \rightarrow CH_3CH_2COO^- + H_2O
covalent Na

(ii) mol propanoic acid = 0.250 \text{ } - \text{ } 0.015 = 0.235
penalise rounding to 1

mol propanoate ions = 0.190 + 0.015 = 0.205
2sfs once 1

(iii)
M1 \([H^+] = \frac{K_a \times [CH_3CH_2COOH]}{[CH_3CH_2COO^-]} \) correct rearrangement, 1

as here or with their numbers even if x

allow \(\frac{K_a \times [HA]}{[A^-]} \) 1

M2 = \frac{(1.35 \times 10^{-5}) (0.235)}{0.205}
insertion of correct numbers 1

(= 1.548 \times 10^{-5})

M3 4.81
allow 1 for correct pH from their \([H^+] \) 1

Total 9
Question 3

(a) \[K_c = \frac{[H_2]^3[C_2H_2]}{[CH_4]^2} \]

if round brackets, penalise here but mark on
if \(K_c \) wrong can score only M1 and conseq units

(b) M1 dividing by volume
if moles used instead of conc can score only M3* (+ units M4);
can score this in M2

\[M2 \quad K_c = \frac{0.28}{0.25} \times \frac{0.12}{0.25} \times \frac{0.44}{0.25} \]

\[(= \frac{(1.12)^3(0.48)}{(1.76)^2}) \]

M3 = 0.218 or 0.22
* 1.36 \times 10^{-2} if vol not used
allow 0.217 – 0.22

M4 mol² dm⁻⁶

(c) to right or to product(s) or forwards
Increase

(d) to left or to reagent or backwards
no effect

(e) total no moles = 0.84
if CE, no second mark

\[\frac{0.12}{0.84} = 0.14(3) \]

allow \(\frac{1}{7} \)

(f) \[0.143 \times 2.78 \times 10^4 = 3.97 \times 10^3 \] (allow 3.89– 4.00 \times 10^3 & 2 sfs i.e. 3.9 – 4.0)
conseq on (e):
penalise wrong units

(g) mol \(H_2 \) = 2.1
mark independently

mol \(C_2H_2 \) = 0.7

Total 14
Question 4

(a) (i) A

\[
\begin{align*}
\text{CH}_3 & \quad \text{C} \equiv \text{C} \\
\text{CH}_3 & \quad \text{CH}_3
\end{align*}
\]

must show C=C

1

(ii) C

\[
\begin{align*}
\text{H}_3\text{C} & \quad \text{C} \equiv \text{C} \\
\text{O} & \quad \text{H}_3\text{C}
\end{align*}
\]

or (CH\(_3\))\(_3\)CCHO NOT (CH\(_3\))\(_3\)CCOH

1

D

\[
\begin{align*}
\text{CH}_3\text{CH}_2 & \quad \text{C} \equiv \text{CH}_2\text{CH}_3 \\
\text{O} & \quad \text{H}_3\text{C}
\end{align*}
\]

allow C\(_2\)H\(_5\) and C\(_2\)H\(_5\)COC\(_2\)H\(_5\)

1

(iii) E

CH\(_3\)CH\(_2\)COOH or C\(_2\)H\(_5\)CO\(_2\)H

1

F

HCOOCH\(_2\)CH\(_3\) or HCO\(_2\)CH\(_2\)CH\(_3\)

1

(iv) G

CH\(_3\)CH=CHCH\(_2\)CH\(_2\)CH\(_3\) CH\(_3\)CH=CHCH(CH\(_3\))_2

1

CH\(_3\)CH=CHC\(_3\)H \quad CH\(_3\)CH\(_2\)CH=CHCH\(_2\)CH\(_3\)

1

CH\(_3\)

\[
\begin{align*}
\text{CH} & \quad \text{C} \equiv \text{CH}_2 \\
\text{H} & \quad \text{CH}_2\text{CH}_3
\end{align*}
\]

must show C=C in alkenes

1

H

\[
\begin{align*}
\text{H}_3\text{C} & \quad \text{C} \equiv \text{CH}_2 \\
\text{CH}_2\text{CH}_3 & \quad \text{H}_3\text{C}
\end{align*}
\]

allow C\(_2\)H\(_3\) or CHCH\(_2\)

1

(v) I

\[
\begin{align*}
\text{CH}_3 & \quad \text{C} \equiv \text{C} \\
\text{H}_3\text{C} & \quad \text{CH}_2\text{CH}_3 \\
\text{OH} & \quad \text{H}_3\text{C}
\end{align*}
\]

or (CH\(_3\))\(_2\)C(OH)C\(_2\)H\(_5\)

1

J

\[
\begin{align*}
\text{CH}_3 & \quad \text{C} \equiv \text{C} \\
\text{OH} & \quad \text{CH}_3
\end{align*}
\]

or (CH\(_3\))\(_3\)CCH\(_2\)OH

1
(b)
(i) 5
(ii) a singlet QWC
 b triplet QWC

Total 13

Question 5

(a)
(i)

(ii) H₂N-CH₂CH₂-COOH not H₂N-C₂H₄-COOH
(iii) ethan(e)-1,2-diamine allow ethylene diamine or 1,2-diaminoethane but penalise wrong numbers
 butan(e)(-1,4)-dioic acid NOT dibutanoic acid

(b)
(i) addition not additional
(ii) 3-methylpent-2-ene

(c)
(i) HOCH₂CH₂OH
 HOOCCH₂CH₂COOH or ClOOCCH₂CH₂COCl
(ii) HOCH₂CH₂COO⁻ allow -COONa but not covalently bonded Na

(d)
(i) van der Waals allow vdW or London forces or dispersion forces
(ii) dipole- dipole QWC Not temporary dipole- induced dipole

Total 11

Question 6
all answers to 3 sfs penalise fewer once

(a)
(i) Expt 2 2.68 ×10⁻⁴
 Expt 3 10.7(2) ×10⁻⁴
 Expt 4 2.08 ×10⁻³

(ii)

k = \frac{\text{rate}}{[X]^2} or \frac{2.68 \times 10^{-4}}{(1.20 \times 10^{-3})^2}

= 186

mol⁻¹ dm³ s⁻¹ allow mol⁻¹ dm³ for misprint

1
(b) increases (exponentially) allow straight line but not

Total 7

Question 7

(a) \[\text{AlCl}_3 \text{ or AlBr}_3 \text{ FeCl}_3 \text{ FeBr}_3 \]

\[\text{CH}_3\text{CH}_2\text{Cl} + \text{AlCl}_3 \rightarrow \text{CH}_3\text{CH}_2^+ + \text{AlCl}_4^- \]
ignore arrows unless wrong e.g. from lp on Al

\[\text{H}^+ + \text{AlCl}_4^- \rightarrow \text{AlCl}_3 + \text{HCl} \]
allow words if all reagents and products described correctly

electrophilic substitution

\[\text{ethylbenzene} \text{ ignore numbers allow phenylethane} \]

phenylethene or poly(phenylethene) or styrene or poly(styrene)
or formula or repeating unit

9 marks

(b) nucleophilic substitution

\[\text{N-ethylphenylamine or N-phenylethylamine} \]

6 marks

Total 15
Question 8

(a) (nucleophilic) addition-elimination

\[
\begin{align*}
\text{M1:} & \quad \text{Cl}^- \quad \text{OH}^- \\
\text{M2:} & \quad \text{C}_6\text{H}_5 \quad \text{C} \quad \text{Cl}^- \\
\end{align*}
\]

M3 for structure
M4 for 3 arrows and lone pair

NB Different from Qu 7b → do not penalise M4 if Cl\(^-\) removes H\(^+\)

5 marks

NB There are four fragment ions in parts (b) and (c).
If these are written with a negative charge or with a radical dot they are all wrong, but if they are written with no charge at all, penalise the first two without + then allow the rest.

(b)
m/z 105 \(\text{C}_6\text{H}_5\text{CO}^+ \) or \(\text{C}_6\text{H}_5\text{CO}^+ \)

1 mark
m/z 77 \(\text{C}_6\text{H}_5^+ \) or \(\text{C}_6\text{H}_5^+ \) but not Wheland horseshoe intermediate

1 mark
\(\text{C}_6\text{H}_5\text{COOCCH}_3^- \) → \(\text{C}_6\text{H}_5\text{CO}^+ \) + \(\cdot\text{OCH}_3 \) allow dot anywhere

2 marks
(1) (1) (for balanced equation)

4 marks

(c)
m/z 43 \(\text{CH}_3\text{CO}^+ \)
V is \(\text{CH}_3\text{COOC}_6\text{H}_5 \)

1 mark
m/z 91 \(\text{C}_6\text{H}_5\text{CH}_2^+ \) or \(+\text{C}_6\text{H}_5\text{CH}_3 \)

1 mark
W is \(\text{HCOOCH}_2\text{C}_6\text{H}_5 \) \(\text{HCOOC}_6\text{H}_4\text{CH}_3 \)

4 marks
(d) (i) OH or acid or (absorption at) 2500-3000 cm\(^{-1}\)
(present in acid not in ester)
1 mark

(ii) use of fingerprint region or (exact match with) known spectrum
1 mark

2 marks

Total 15