

### **General Certificate of Education**

# **Chemistry 6421**

CHM4 Further Physical and Organic Chemistry

## **Mark Scheme**

2007 examination - June series

Mark schemes are prepared by the Principal Examiner and considered, together with the relevant questions, by a panel of subject teachers. This mark scheme includes any amendments made at the standardisation meeting attended by all examiners and is the scheme which was used by them in this examination. The standardisation meeting ensures that the mark scheme covers the candidates' responses to questions and that every examiner understands and applies it in the same correct way. As preparation for the standardisation meeting each examiner analyses a number of candidates' scripts: alternative answers not already covered by the mark scheme are discussed at the meeting and legislated for. If, after this meeting, examiners encounter unusual answers which have not been discussed at the meeting they are required to refer these to the Principal Examiner.

It must be stressed that a mark scheme is a working document, in many cases further developed and expanded on the basis of candidates' reactions to a particular paper. Assumptions about future mark schemes on the basis of one year's document should be avoided; whilst the guiding principles of assessment remain constant, details will change, depending on the content of a particular examination paper.

Further copies of this Mark Scheme are available to download from the AQA Website: www.aqa.org.uk

Copyright © 2007 AQA and its licensors. All rights reserved.

#### COPYRIGHT

AQA retains the copyright on all its publications. However, registered centres for AQA are permitted to copy material from this booklet for their own internal use, with the following important exception: AQA cannot give permission to centres to photocopy any material that is acknowledged to a third party even for internal use within the centre.

Set and published by the Assessment and Qualifications Alliance.

### **CHM 4**

#### **Question 1**

(a) (i) 
$$kPa^{-1}$$
 not  $1/kPa$  (1)

(ii) 
$$pO_2 = \frac{(p_{SO_3})^2}{(p_{SO_2})^2 K_p}$$
 one mark for correct rearrangement of expression to give  $pO_2 = ....$  (1)

$$= \frac{90.8^2}{10.6^2 \times 1.42}$$
 one mark for insertion of correct numbers into acorrect expression

These can be in either order

$$= 51.7 \text{ (allow } 51.6 - 51.9)$$
 (1)

(ii) 
$$pp = mole fraction \times total pressure$$
 (1)

(iii) mark consequentially on (i) OR one mark for (1) correct rearrangement of expression to give 
$$P = \dots$$

$$K_p = \frac{(\text{mol fn SO}_3)^2 \times P^2}{[(\text{mol fn SO}_2)^2 \times P^2][(\text{mol fn O}_2) \times P]}$$

must specify substances

one mark for insertion of correct numbers into a correct expression 
$$These steps can be in either order$$
 (1)

$$= 171 (kPa)$$
 (1)

Total 14
Question 2

(a) (i) 
$$pH = -log[H^+]$$
 must be [] allow  $log \frac{1}{[H^+]}$  (1)

(b) (i) 
$$CO_3^{2-} + H^+ \rightarrow HCO_3^-$$
 ignore spectator ions (1)  $HCO_3^- + H^+ \rightarrow H_2O + CO_2$  OR  $\rightarrow H_2CO_3$  (1)

(iii) 
$$\frac{40}{10^3} \times 0.150 = 6.0 \times 10^{-3}$$
 (1)

(iv) mol HCl = 
$$12.0 \times 10^{-3}$$
 (consequential on (iii)) must score this to gain 2nd mark) (1)

conc = 
$$\frac{12.0 \times 10^{-3}}{50.0 \times 10^{-3}}$$
 = 0.24 mol dm<sup>-3</sup> (1)

Total 9

#### Question 3 penalise pH with decimal places ≠ 2 once per paper

(a) 
$$K_a = \frac{[H^+]^2}{[CH_3CH_2COOH]}$$
 (1) 
$$[H^+] = \sqrt{(1.35 \times 10^{-5} \times 0.55)} = 2.72 \times 10^{-3}$$
 gets 2 (1)

$$[H^{+}] = \sqrt{(1.35 \times 10^{-5} \times 0.55)} = 2.72 \times 10^{-3}$$
 gets 2 (1)

$$pH = 2.56 \text{ or } 2.57$$
 (1)

(b) (i) 
$$30.0 \times 10^{-3} \times 0.55 = 1.65 \times 10^{-2}$$
 or 0.017 (at least 2sig figs) (1)

(ii) 
$$10.0 \times 10^{-3} \times 0.23 = 2.30 \times 10^{-3} \text{ or } 0.0023 \text{ (at least 2 sig figs)}$$
 (1)

(iii) 
$$(1.65 \times 10^{-2}) - (2.30 \times 10^{-3}) = 1.42 \times 10^{-2}$$
 i.e. (i) – (ii) above (1)

#### if addition not subtraction, also penalise first mark gained in (iv)†

if any mention of [H<sup>+</sup>]<sup>2</sup>/[HA] max 1 for moles of salt (iv)

mol CH<sub>3</sub>CH<sub>2</sub>COONa = 
$$2.30 \times 10^{-3}$$
 (may be scored in the expression) (1)

$$[H^{+}] = \frac{\text{Ka x } [\text{CH}_{3}\text{CH}_{2}\text{COOH}]}{[\text{CH}_{3}\text{CH}_{2}\text{COO}^{-}]} *$$
or
$$= \frac{(1.35 \times 10^{-5}) (1.42 \times 10^{-2}/\text{V})}{(2.3 \times 10^{-3}/\text{V})} \frac{(1.4 \times 10^{-5}) (1.4 \times 10^{-2}/\text{V})}{(2.3 \times 10^{-3}/\text{V})}$$
(1)

$$= 8.33 \times 10^{-5}$$
  $= 8.5 \times 10^{-5}$  (1)  
pH = 4.08 pH = 4.07

- expression may be pH = pKa + log[salt/acid] or pKa log[acid/salt]
- † if addition, 3.96-3.97 gets two in part (iv)

(a) (i) 
$$k = \frac{0.65}{(0.15)(0.24)^2}$$
 if  $k$  upside down, (1) 
$$\max 1 \text{ for consequential units}$$
$$= 75.23 \text{ to } 74.7$$
 
$$\min^{-2} \text{dm}^{-6} \text{s}^{-1}$$
 (1)

- (ii) 0.081 (min sig. figs required) (ignore wrong units) may be consequential on their k i.e.  $(1.08 \times 10^{-3}) \times \text{their } k$
- (b) (i) 2 (1) (1)

(a) (i) 
$$CH_3 - H_3N - C - COO$$

(ii) 
$$\begin{array}{c} CH_3 \\ H_2N - C - C \\ H \end{array}$$
 OCH<sub>3</sub>

(b) 
$$+ NH_3$$
  $+ CH_2)_4 - C - COOH$   $+ COOH$   $+ COOH$   $+ COOH$ 

allow –CON and zwitterions and dipeptide – cyclic(-H<sub>2</sub>O) Total 6

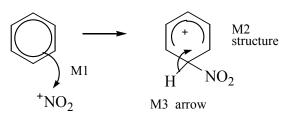
allow but not 
$$C \longrightarrow H_2$$

- (a) (i) 2-methylbutan-1-ol (numbers essential) (1)
  - (ii) optical (1)
- (b) (i) elimination not nucleophilic nor any other qualification (1) not just dehydration

(ii) 
$$CH_3CH_2$$
 penalise  $-CH_3CH_2$  each time 
$$-C - CH_2 - CH_3 - CH_$$

addition or radical (QOL) i.e. not additional

(iii) 
$$CH_3CH_2$$
  $H$  or  $CH_3$   $CH_3$  allow  $C_2H_5CH=CHCH_3$  (1)


(c) (i) 
$$CH_3CH_2$$
— $C$ — $CH_2CH_3$  (1)  $CH_3CH_5$  allow  $C_2H_5COC_2H_5$ 

(e) (i) 
$$400 - 1500 \text{ cm}^{-1}$$
 allow range from [0-600] to [1200 - 1500] (1)

(a)  $conc\ HNO_3$  if both conc missing can score one for both acids (1)  $conc\ H_2SO_4$  if omitted can score one for reagents in the equation ignore temp/reflux etc

 $HNO_3 + 2 H_2SO_4 \rightarrow NO_2^+ + H_3O^+ + 2HSO_4^-$  (or in two equations) or  $HNO_3 + H_2SO_4 \rightarrow NO_2^+ + H_2O + HSO_4^-$  or  $HNO_3 + H^+ \rightarrow NO_2^+ + H_2O$ 

electrophilic substitution (1)



M1 arrow from within hexagon to N or to + on N don't penalise position of + on N of +NO<sub>2</sub> (3) horseshoe must not extend beyond C2 to C6 but can be smaller + not too close to C1 M3 arrow into hexagon unless Kekule

(b) 1,4-dinitrobenzene (1)

Sn or Fe/HCl (conc or dil or neither) ignore extra NaOH (1)

Sn or Fe/H<sub>2</sub>SO<sub>4</sub> (dil or neither) **not** HNO<sub>3</sub> at all or H<sub>2</sub>/Ni **not** NaBH<sub>4</sub>/ LiAlH<sub>4</sub> or Na/C<sub>2</sub>H<sub>5</sub>OH

lone pair or electron pair on N in Y
delocalised into ring (QOL)
less available for protonation than lp in Z

(1)
(1)

$$\begin{array}{c}
M2 \\
CH_3CH_2 \\
\hline
C1 \\
CH_3 \\
\hline
CH_3 \\
CH_3 \\
\hline
CH_3 \\
CH_3 \\
\hline
CH_3 \\
CH_3 \\
\hline
CH_3 \\
C$$

must show a bond to -NH<sub>2</sub> to gain M1 penalise :Cl<sup>-</sup> attacking H in M4

(ii) allow 
$$C_2H_5$$
 so minimum is 
$$(C_2H_5CO)_2O$$
 
$$CH_3CH_2 - C$$
 
$$CH_3CH_2 - C$$
 
$$(1)$$

(iii) 
$$CH_3CH_2CONHCH_3^{+} \rightarrow CH_3CH_2CO^{+} + CH_3NH^{-}$$
  
\* or  $C_4H_9NO^{+}$   
(1) (1) (1)  
be lenient on position of + and dot

(b) Reaction 1 Nucleophilic addition (1)

$$\begin{array}{c}
OH \\
H_3C \longrightarrow C \longrightarrow CN \\
\downarrow \\
H
\end{array}$$
(1)

Reaction 2 
$$H_2/Ni$$
 Na/ethanol or LiAlH<sub>4</sub> (1) hydrogenation or reduction reduction (1)

Total 14

\* if you suspect erratum sheet was not circulated,  $CH_3CON^+$  is 57 allow  $CH_3CONHCH_3^{+} \rightarrow CH_3CON^+ + HCH_3$  or  $CH_4$