General Certificate of Education

Chemistry 6421

CHM4 Further Physical and Organic Chemistry

Mark Scheme

2008 examination - June series
Mark schemes are prepared by the Principal Examiner and considered, together with the relevant questions, by a panel of subject teachers. This mark scheme includes any amendments made at the standardisation meeting attended by all examiners and is the scheme which was used by them in this examination. The standardisation meeting ensures that the mark scheme covers the candidates’ responses to questions and that every examiner understands and applies it in the same correct way. As preparation for the standardisation meeting each examiner analyses a number of candidates’ scripts: alternative answers not already covered by the mark scheme are discussed at the meeting and legislated for. If, after this meeting, examiners encounter unusual answers which have not been discussed at the meeting they are required to refer these to the Principal Examiner.

It must be stressed that a mark scheme is a working document, in many cases further developed and expanded on the basis of candidates’ reactions to a particular paper. Assumptions about future mark schemes on the basis of one year’s document should be avoided; whilst the guiding principles of assessment remain constant, details will change, depending on the content of a particular examination paper.

Further copies of this Mark Scheme are available to download from the AQA Website: www.aqa.org.uk

Copyright © 2008 AQA and its licensors. All rights reserved.

COPYRIGHT
AQA retains the copyright on all its publications. However, registered centres for AQA are permitted to copy material from this booklet for their own internal use, with the following important exception: AQA cannot give permission to centres to photocopy any material that is acknowledged to a third party even for internal use within the centre.

Set and published by the Assessment and Qualifications Alliance.

The Assessment and Qualifications Alliance (AQA) is a company limited by guarantee registered in England and Wales (company number 3644723) and a registered charity (registered charity number 1073334).
Registered address: AQA, Devan Street, Manchester M15 6EX
Dr Michael Cresswell Director General
CHM4

SECTION A

Question 1

(a) 1.42
pH to < or > 2dp penalised once per paper

(b) \([H^+] = 0.038/2\) or \(0.019\)
\[\text{pH} = 1.72\]

(c) (i) (only) partly or slightly dissociated/ionised
NOT “not completely ionised”

proton donor

(ii) \(K_a = \frac{[H^+][X^-]}{[HX]}\)
Ignore use of HA etc

(iii) \([H^+] = 10^{-3.48} = 3.3(1) \times 10^{-4}\)
\[K_a = \frac{[H^+]^2}{[HX]}\] here or in part(ii) or \(\frac{(3.31 \times 10^{-4})^2}{0.063}\)
\[= 1.7(4) \times 10^{-6}\] (ignore units even if wrong)
(d) (i) \[4.20 \text{ allow 4.19 – 4.21} \] (1)

(ii) \[
\text{mol NaOH} = 10.0 \times 10^{-3} \times 0.130 = 1.30 \times 10^{-3} \text{ or } 0.0013 \quad (\text{M1})
\]

\[
\text{mol HA left} = 0.055 - 0.0013 = 0.0537 \quad (\text{M2})
\]

\[
\text{mol A}^- \text{ present} = 0.025 + 0.0013 = 0.0263 \quad (\text{M3})
\]

\[
[H^+] = \frac{K_a \times [HA]}{[A^-]} \quad \text{or} \quad \frac{(2.87 \times 10^{-5})(0.0537/V)}{(0.0263/V)} (= 5.86 \times 10^{-5}) \quad (\text{M4})
\]

If [HA] and [A] wrong way round - no further marks

\[\text{pH} = 4.23 \quad (\text{M5})\]

The essential part of this calculation is the subtraction/addition of \(1.30 \times 10^{-3}\) moles

- If no subtraction/addition at all - max 1 for M1
- If one subtraction/addition missing or chemically wrong – lose M2 or M3 and next mark gained = max 3 (see * below)

If subtraction/addition reversed - max 2 for M1 and M5 ([H$^+$] = 6.82 \times 10^{-5}) pH = 4.17

\[
0.0537/0.110 = 0.488 \quad 0.0263/0.110 = 0.239
\]

* \[
\frac{(2.87 \times 10^{-5})(0.0550/V)}{(0.0263/V)} = 6.00 \times 10^{-5} \quad \text{pH} = 4.22
\]

* \[
\frac{(2.87 \times 10^{-5})(0.0537/V)}{(0.0250/V)} = 6.16 \times 10^{-5} \quad \text{pH} = 4.21
\]

Total 15 marks
Question 2

(a) order wrt A = 2 .. (1)

order wrt B = 1 .. (1)

(b) (i) (rate =) \(k [C][D]^2 \) .. (1)

(ii) \(k = \frac{1.45 \times 10^{-4}}{(2.50 \times 10^{-2})(6.65 \times 10^{-2})^2} \) NOT \(\frac{\text{rate}}{[C][D]^2} \) .. (1)

= 1.3(1) .. (1)

mol\(^{-2}\)dm\(^6\)s\(^{-1}\) allow units conseq to wrong rate equation in (b)(i)

Total 6 marks
Question 3

(a) (i) \[pp = \text{mole fraction} \times \text{total pressure} \]
\[\text{or } pp \text{ hydrazine} = 0.22 \times 150 \]
\[= 33 \text{ (kPa)} \]
Ignore units even if wrong \(\text{(NB 2 marks for 33)} \) \(\text{(1)} \)

(ii) \[pp \text{ N}_2 + pp \text{ H}_2 = 150 - 33 = 117 \]
Or \[\text{mol fn N}_2 + \text{mol fn H}_2 = 0.78 \]

\[pp \text{ N}_2 = \frac{1}{3} \times 117 = 39 \]
\[pp \text{ N}_2 = 0.26 \times 150 = 39 \]
\(\text{(1)} \)

\[pp \text{ H}_2 = \frac{2}{3} \times 117 = 78 \]
\[pp \text{ H}_2 = 0.52 \times 150 = 78 \]
\(\text{(1)} \)

Conseq on (i) but must show working

Allow one for \[pp \text{ H}_2 = 2 \times pp \text{ N}_2 \]

Also allow one for \[pp \text{ H}_2 \] if you can see that their answer has been achieved by subtracting (their \[pp\text{N}_2\text{H}_4 \] + their \[pp \text{ N}_2 \]) from 150

(b) (i) \[K_p = \frac{P_{N_2} \times P_{H_2}^2}{P_{N_2\text{H}_4}} \]
Penalise \[\] but mark on

\[\text{if } K_p \text{ wrong, no marks for calc} \]
\(\text{(1)} \)

(ii) \[K_p = \frac{27 \times 48^2}{75} \]
If numbers reversed, score units mark only

\[= 829 \text{ or } 830 \]
\(\text{(or } 829 \text{ or } 830 \times 10^6 \text{ tied to Pa below) } \)

\[\text{kPa}^2 \]
Or conseq on their wrong \(K_p \) in (b)(i) \(\text{(1)} \)

(c) equm moves to fewer (gas) moles \(\) (not just to LHS)

To counter increase P or to reduce P \(\text{(1)} \)

Total 11 marks
Question 4

(a) Condensation or addition-elimination

\[
\begin{align*}
\text{N–}(\text{CH}_2)_3\text{N–}(\text{CH}_2)_3\text{C} & \quad \text{Penalise missing ties in polymers} \\
\text{H} & \quad \text{once per question} \\
\text{H} & \quad \text{Allow CONH and COHN} \\
\text{O} & \quad \text{(1)} \\
\text{O} & \quad \text{(1)}
\end{align*}
\]

Must have both C chains and an attempt at a peptide link to score at all, then -1 per error

OOC-(CH$_2$)$_3$-COO counts as 1 mistake

(b) (i) \[
\begin{align*}
\text{H}_2\text{C} & \quad \text{allow –OCOCH}_3 \quad \text{and } -\text{O}_2\text{CCH}_3 \\
\text{O} & \quad \text{(1)} \\
\text{C} & \quad \text{(1)} \\
\text{O} & \quad \text{(1)} \\
\text{CH}_3 & \quad \text{(1)}
\end{align*}
\]

(ii) \[
\begin{align*}
\text{CH}_2 & \\
\text{CH} & \\
\text{OH} & \quad \text{(1)}
\end{align*}
\]
(c) (i)

\[
\begin{align*}
\text{H}_2\text{N} & \quad \text{C} & \quad \text{N} & \quad \text{C} & \quad \text{COOH} \\
\text{CH}_3 & \quad \text{O} & \quad \text{H} & \quad \text{CH}_2\text{OH} \\
\end{align*}
\]

penalise –COONH- again

(1)

\[
\begin{align*}
\text{H}_2\text{N} & \quad \text{C} & \quad \text{N} & \quad \text{C} & \quad \text{COOH} \\
\text{CH}_2\text{OH} & \quad \text{O} & \quad \text{H} & \quad \text{CH}_3 \\
\end{align*}
\]

penalise polymer both times

(1)

(ii)

\[
\begin{align*}
\text{H}_3\text{N} & \quad \text{C} & \quad \text{COO}^- \\
\text{O} & \quad \text{H} & \quad \text{CH}_2\text{OH} \\
\end{align*}
\]

(1)

(iii)

\[
\begin{align*}
\text{H}_2\text{N} & \quad \text{C} & \quad \text{COOCH}_3 \\
\text{CH}_3 & \quad \text{OR} & \quad \text{-NH}_3^+ \\
\end{align*}
\]

(1)

(iv)

\[
\begin{align*}
\text{H}_2\text{C} & \quad \text{O} & \quad \text{CH}_2 & \quad \text{C} & \quad \text{COOH} \\
\text{NH} & \quad \text{O} & \quad \text{H}_3\text{C} & \quad \text{CH}_3 \\
\end{align*}
\]

\[
\begin{align*}
\text{H}_2\text{C} & \quad \text{O} & \quad \text{CH}_2 & \quad \text{C} & \quad \text{O} & \quad \text{CH}_3 \\
\text{H}_3\text{C} & \quad \text{C} & \quad \text{O} & \quad \text{H}_3\text{C} & \quad \text{CH}_3 \\
\end{align*}
\]

CH$_3$CO can in theory be attached in 4 places as shown in above (RHS)

max 2 marks for any two attachments

If three attachments $+2 - 1 = 1$ mark; if four attachments $+2 - 2 = 0$ marks

Total 11 marks
Question 5

(a) (i) electrophilic addition

 (ii) \(\text{CH}_3\text{-CH}=\text{CH}-\text{CH}_3 \) must show C=C

(b) nucleophilic substitution

\[
\text{CH}_3\text{-CH-CH}_2\text{CH}_3 \xrightarrow{\text{M1}} \text{CH}_3\text{-CH-CH}_2\text{CH}_3 + \text{NH}_3
\]

- Allow SN1
- lose M4 if :Br used to remove H⁺

(c) (i) \(\text{C}_4\text{H}_9\text{Br} \rightarrow \text{C}_4\text{H}_{11}\text{N} \)

\[
M_r = 137 \quad M_r = 73 \quad \text{(both Mr values)} \quad \text{or} \quad 10/137 \quad (= 0.0730)
\]

\[
0.0730 \times 73 \quad (= 5.33)
\]

\[
53.4\% \quad = \quad 0.534 \times 5.33 \quad = \quad 2.85 \text{ g (allow rounding)}
\]

(ii) further substitution or \(\text{G} \) reacts with F or further reaction or II/III etc amines formed NOT just “other products formed”

(d) 4

- \(a \) doublet or 2

- \(b \) triplet or 3
(e) (i) \[\text{CH}_3\text{C} - \text{NH}_2\text{C} - \text{CH}_3\] (1)

(ii) \[\text{CH}_3\text{N} - \text{CH(CH}_3\text{)}_2\text{H}\] (1)

(iii) \[\text{CH}_3\text{N} - \text{CH}_2\text{CH}_3\text{ or C}_2\text{H}_5\] (1)

Total 17 marks
Question 6

(a) \[\text{CH}_3\text{CH}_2\text{COCl} + \text{H}_2\text{O} \rightarrow \text{CH}_3\text{CH}_2\text{COOH} + \text{HCl} \]

allow molecular formulae \[\text{C}_3\text{H}_5\text{OCl} + \text{H}_2\text{O} \rightarrow \text{C}_3\text{H}_6\text{O}_2 + \text{HCl} \]

Penalise \(\text{CH}_3\text{COCl} \) once in the question

(nucleophilic) addition-elimination

\[\text{CH}_3\text{CH}_2\overset{\text{Cl}}{\text{C}} \quad \overset{\text{H}}{\text{O}} \quad \overset{\text{H}}{\text{O}} \quad \overset{\text{H}}{\text{H}} \quad \overset{\text{Cl}}{\text{C}} \rightarrow \text{CH}_3\text{CH}_2\overset{\text{O}}{\text{C}} \quad \overset{\text{H}}{\text{O}} \quad \overset{\text{H}}{\text{O}} \quad \overset{\text{H}}{\text{H}} \]

M2

M3 for structure

M4 for 3 arrows and lone pair

Allow M1 only for attack of water on acylium ion but not M2 separately

Total 6 marks
(b)

+ \[
\begin{align*}
\text{C}_6\text{H}_6 & + \text{C}_3\text{H}_5\text{OCl} & \rightarrow & \text{C}_9\text{H}_{10}\text{O} + \text{HCl} \\
\text{CH}_3\text{CH}_2\text{COCl} & + \text{AlCl}_3 & \rightarrow & \text{CH}_3\text{CH}_2\text{CO} + \text{AlCl}_4^- \\
\text{AlCl}_3 & + \text{H}^+ & \rightarrow & \text{AlCl}_3 + \text{HCl}
\end{align*}
\]

(1)

Ignore arrows except if from Al

Be lenient on position of + in equation

\[
\text{AlCl}_4^- + \text{H}^+ \rightarrow \text{AlCl}_3 + \text{HCl}
\]

(1)

electrophilic substitution

M1 arrow from within hexagon to C or to + on C

+ must be on C of RCO in mechanism

(8 marks)

Total 14 marks
Question 7

(a) Incomplete reagent (e.g. carbonate) loses reagent mark, but mark on

If more than one test including a different test on P and Q; give worst mark for one test; if either reagent wrong - no marks at all

For “no reaction” allow “nothing” Wrong reagent is CE = zero

(i) reagent Br₂ not Br₂/uv KMnO₄/ acidified or H⁺

P no reaction no reaction or stays purple
Q bromine decolourised colourless or brown

(ii) reagent Na₂CO₃/ NaHCO₃ UI PCl₅ PCl₃ Suitable

named carbonate litmus SOCl₂ metal
R no reaction No reaction No reaction No reaction
S effervescence or CO₂ red fumes effervescence or H₂ or dissolves

Alternate:

(ii) reagent Bradys or 2,4,dnph I₂/NaOH or NaOCl/KI

R Orange/yellow ppt Yellow ppt No reaction
S No reaction No reaction Smell

(iii) reagent K₂Cr₂O₇/ KMnO₄/

acidified or H⁺ acidified or H⁺
T turns green colourless or brown
U no reaction no reaction
stays orange stays purple

(9 marks)
(b) \[
\begin{align*}
\text{H}_3\text{C} & \text{C} \text{CH}_3 \\
\text{CH}_3 & \text{CH}_3 \\
\text{+} & \text{+}
\end{align*}
\]
\text{or } (\text{CH}_3)_3\text{C}^+ \text{ allow } [\quad]^+
\quad (1)

\left[(\text{CH}_3)_3\text{CCH}_2\text{OH}\right]^- \rightarrow (\text{CH}_3)_3\text{C}^+ + \text{CH}_3\text{OH} \text{ or } \text{CH}_3\text{O} \text{ (allow dot anywhere)}
\quad (2)

\text{or } [\text{C}_5\text{H}_12\text{O}]^- \quad (1) \text{ or } \text{C}_4\text{H}_9^+ \quad (1) \text{ for radical}

(3 marks)

(c) \text{CDCl}_3 \text{ or } \text{CCl}_4 \text{ or } \text{D}_2\text{O} \text{ or } \text{C}_6\text{D}_6
\quad (1)

\text{V} \text{ ethanoic anhydride}
\quad (1)

\text{W} \text{ dimethylethan(e)dioate (ignore numbers)}
\quad (1)

\text{V} \text{ has peak at } \delta = 2.1 - 2.6 \text{ (and } \text{W} \text{ doesn’t) or}

\text{W} \text{ has peak at } \delta = 3.7 - 4.1 \text{ (and } \text{V} \text{ doesn’t)}
\quad (1)

Allow \delta \text{ for } \text{W} \text{ is higher than } \delta \text{ for } \text{V} \text{ or peak for } \text{W} \text{ is further to left etc}

but if use numbers both must be correct.

(4 marks)

\textbf{Total 16 marks}