

General Certificate of Education

Chemistry 6421

CHM4 Further Physical and Organic Chemistry

Mark Scheme

2008 examination - June series

Mark schemes are prepared by the Principal Examiner and considered, together with the relevant questions, by a panel of subject teachers. This mark scheme includes any amendments made at the standardisation meeting attended by all examiners and is the scheme which was used by them in this examination. The standardisation meeting ensures that the mark scheme covers the candidates' responses to questions and that every examiner understands and applies it in the same correct way. As preparation for the standardisation meeting each examiner analyses a number of candidates' scripts: alternative answers not already covered by the mark scheme are discussed at the meeting and legislated for. If, after this meeting, examiners encounter unusual answers which have not been discussed at the meeting they are required to refer these to the Principal Examiner.

It must be stressed that a mark scheme is a working document, in many cases further developed and expanded on the basis of candidates' reactions to a particular paper. Assumptions about future mark schemes on the basis of one year's document should be avoided; whilst the guiding principles of assessment remain constant, details will change, depending on the content of a particular examination paper.

Further copies of this Mark Scheme are available to download from the AQA Website: www.aqa.org.uk

Copyright © 2008 AQA and its licensors. All rights reserved.

COPYRIGHT

AQA retains the copyright on all its publications. However, registered centres for AQA are permitted to copy material from this booklet for their own internal use, with the following important exception: AQA cannot give permission to centres to photocopy any material that is acknowledged to a third party even for internal use within the centre.

Set and published by the Assessment and Qualifications Alliance.

CHM4

SECTION A

Question 1

(a) 1.42 pH to
$$<$$
 or $>$ 2dp penalised once per paper (1)

(b)
$$[H^+] = 0.038/2 \text{ or } 0.019$$

$$pH = 1.72 \tag{1}$$

(ii)
$$K_a = \frac{[H^+][X^-]}{[HX]}$$
 Ignore use of HA etc (1)

(iii)
$$[H^+] = 10^{-3.48} = 3.3(1) \times 10^{-4}$$
 (1)

$$K_a = \frac{[H^+]^2}{[HX]}$$
 here or in part(ii) or $\frac{(3.31 \times 10^{-4})^2}{0.063}$ (1)

=
$$1.7(4) \times 10^{-6}$$
 (ignore units even if wrong) (1)

(d) (i)
$$4.20$$
 allow $4.19 - 4.21$ (1)

(ii) mol NaOH =
$$10.0 \times 10^{-3} \times 0.130 = 1.30 \times 10^{-3}$$
 or 0.0013 (M1)

$$mol HA left = 0.055 - 0.0013 = 0.0537$$
 (M2)

$$\text{mol A}^-\text{ present} = 0.025 + 0.0013 = 0.0263$$
 (M3)

$$[H^{+}] = \frac{\text{Ka x [HA]}}{[A^{-}]} \text{ or } \frac{(2.87 \times 10^{-5}) (0.0537/\text{V})}{(0.0263/\text{V})} (= 5.86 \times 10^{-5})$$
 (M4)

If [HA] and [A] wrong way round - no further marks

$$pH = 4.23$$
 (M5)

The essential part of this calculation is the subtraction/addition of $1.30 \times 10^{-3}\,$ moles

- If no subtraction/addition at all max 1 for M1
- If one subtraction/addition missing or chemically wrong lose M2 or M3 and next mark gained = max 3 (see * below)

If subtraction/addition reversed - max 2 for M1 and M5 ($[H^+] = 6.82 \times 10^{-5}$) pH = 4.17

$$0.0537/0.110 = 0.488$$
 $0.0263/0.110 = 0.239$

*
$$\frac{(2.87 \times 10^{-5}) (0.0550/\text{V})}{(0.0263/\text{V})} = 6.00 \times 10^{-5}$$
 $\text{pH} = 4.22$

*
$$\frac{(2.87 \times 10^{-5})(0.0537/V)}{(0.0250/V)} = 6.16 \times 10^{-5}$$
 $pH = 4.21$

Total 15 marks

(a) order wrt
$$\mathbf{A} = 2$$

order wrt
$$\mathbf{B} = 1$$
 (1)

(b) (i)
$$(\text{rate} =) k [\mathbf{C}][\mathbf{D}]^2$$
 (1)

(ii)
$$k = \frac{1.45 \times 10^{-4}}{(2.50 \times 10^{-2})(6.65 \times 10^{-2})^2}$$
 NOT $\frac{\text{rate}}{[C][D]^2}$ (1)

$$= 1.3(1) \tag{1}$$

mol⁻²dm⁶s⁻¹ allow units conseq to wrong rate equation in (b)(i)

Total 6 marks

(a) (i)
$$pp = mole fraction \times total pressure$$
 (1)

or pp hydrazine = 0.22×150

(ii)
$$pp N_2 + pp H_2 = 150 - 33 = 117$$
 Or mol fin $N_2 + mol$ fin $H_2 = 0.78$ (1)

$$pp N_2 = \frac{1}{3} \times 117 = 39$$
 $pp N_2 = 0.26 \times 150 = 39$ (1)

$$pp H_2 = \frac{2}{3} \times 117 = 78$$
 $pp H_2 = 0.52 \times 150 = 78$ (1)

conseq on (i) but must show working

Allow one for pp $H_2 = 2 \times pp N_2$

also allow one for pp H_2 if you can see that their answer has been achieved by subtracting (their pp N_2H_4 + their pp N_2) from 150

(b) (i)
$$K_p = \frac{P_{N_2} \times P^2_{H_2}}{P_{N_2H_4}}$$
 Penalise [] but mark on if K_p wrong, no marks for calc (1)

(ii)
$$K_p = \frac{27 \times 48^2}{75}$$
 If numbers reversed, score units mark only (1)

=
$$829 \text{ or } 830$$
 (or $829 \text{ or } 830 \times 10^6 \text{ tied to Pa below}$) (1)

$$kPa^2$$
 or conseq on their wrong K_p in (b)(i) (1)

to counter increase P or to reduce P (1)

Total 11 marks

(a) Condensation or addition-elimination (1)

Must have both C chains and an attempt at a peptide link to score at all, then -1 per error

OOC-(CH₂)₃-COO counts as l mistake

(b) (i)
$$H_2C = CH$$

O

C=O allow -OCOCH₃ and -O₂CCH₃

(1)

(ii)
$$-CH_2$$
 $-CH$ $-CH$

(ii)
$$H_{3}N - C - COO - COO - CH_{2}OH$$
 (1)

(iii)
$$H_2N$$
—C—COOCH₃ $+$ (1) CH_3 or $-NH_3$

CH₃CO can in theory be attached in 4 places as shown in above (RHS)

max 2 marks for any two attachments

If three attachments +2-1 = 1 mark; if four attachments +2-2 = 0 marks

Total 11 marks

(ii)
$$CH_3$$
- CH = CH - CH_3 must show C = C (1)

(b) nucleophilic substitution (1)

Allow SN1

lose M4 if :Br used to remove H⁺

(c) (i)
$$C_4H_9Br \rightarrow C_4H_{11}N$$
 (1)

 $M_r = 137$ $M_r = 73$ (both Mr values) or 10/137 (= 0.0730)

$$0.0730 \times 73 \ (= 5.33)$$

$$53.4\% = 0.534 \times 5.33 = 2.85 \text{ g} \text{ (allow rounding)}$$
 (1)

(ii) further substitution or **G** reacts with F or further reaction or II/III etc amines formed NOT just "other products formed" (1)

$$(d) \quad 4 \tag{1}$$

a doublet or 2 (1)

$$b$$
 triplet or 3 (1)

(e) (i)
$$CH_3$$
 (1) CH_3 — C — NH_2 CH_3

(ii)
$$CH_3$$
— N — $CH(CH_3)_2$ (1) H

(iii)
$$CH_3$$
— N — CH_2CH_3 or C_2H_5 (1) CH_3

Total 17 marks

(a)
$$CH_3CH_2COC1 + H_2O \rightarrow CH_3CH_2COOH + HC1$$
 (1)

allow molecular formulae $C_3H_5OCl + H_2O \rightarrow C_3H_6O_2 + HCl$

Penalise CH₃COCl once in the question

(nucleophilic) addition-elimination

$$\begin{array}{c} M2 \\ CH_3CH_2 \\ \hline \\ M1 \\ \hline \\ H \\ \hline \\ \end{array} \begin{array}{c} C\\ Cl \\ \hline \\ CH_3CH_2 \\ \hline \\ C \\ \hline \\ \end{array} \begin{array}{c} C\\ Cl \\ \hline \\ \\ H \\ \end{array} \begin{array}{c} M3 \text{ for structure} \\ M4 \text{ for 3 arrows} \\ \text{and lone pair} \\ \end{array}$$

Allow M1 only for attack of water on acylium ion but not M2 separately

Total 6 marks

(1)

(4)

(b)
$$+ CH_3CH_2COCI \longrightarrow \bigcirc C-CH_2CH_3 + HCI$$
 (1)

allow $C_6H_6 + C_3H_5OC1 \longrightarrow C_9H_{10}O + HC1$

$$CH_3CH_2COC1 + AlCl_3 \longrightarrow CH_3CH_2CO + AlCl_4 - equ (1)$$

Ignore arrows except if from Al

Be lenient on position of + in equation

$$AlCl_4^- + H^+ \rightarrow AlCl_3 + HCl \tag{1}$$

electrophilic substitution (1)

horseshoe must not extend beyond C2 to C6 but can be smaller

+ not too close to C1

M3 arrow into hexagon unless Kekule

allow M3 arrow independent of M2 structure

M1 arrow from within hexagon to C or to + on C

+ must be on C of RCO in mechanism

(8 marks)

(3)

Total 14 marks

(a) Incomplete reagent (e.g. carbonate) loses reagent mark, but mark on

If more than one test including a different test on P and Q; give worst mark for one test; if either reagent wrong - no marks at all

	reagent wrong - no marks at all					
	For "no	reaction" allow "n	othing"	Wrong reag	ent is CE = zero	
(i)	reagent	Br ₂ not Br ₂ /uv	KMnO ₄ / acidified or H ⁺		(1)	
	P	no reaction	no reaction or	no reaction or stays purple (1		
	Q	bromine decolourised	d colourless or b	colourless or brown		
(ii)	reagent	Na ₂ CO ₃ / NaHCO ₃	UI	PCl ₅ PCl ₃	Suitable	(1)
		named carbonate	litmus	$SOCl_2$	metal	
	R	no reaction	No reaction	No reaction	No reaction	(1)
	S	effervescence or CO ₂ or dissolves	₂ red	fumes	effervescence or H ₂ or dissolves	(1)
Alter	nate:					
(ii)	reagent	Bradys or 2,4,dnph	I ₂ /NaOH or	named alcol/acid (cataly		(1)
			NaOCl/KI	faciu (Catary	si)	
	R	Orange/yellow ppt	Yellow ppt	No reaction		(1)
	S	No reaction	No reaction	Smell		(1)
(iii)	reagent	K ₂ Cr ₂ O ₇ /	KMnO ₄ /			(1)
		acidified or H ⁺	acidified or H ⁺			
	T	turns green	colourless or brown (1)			
	U	no reaction	no reaction			(1)
		stays orange	stays purple			
						(9 marks)

(b)
$$CH_3$$

 H_3C — CH_3 or $(CH_3)_3C^+$ allow [] $^+$ (1)

$$[(CH_3)_3CCH_2OH]^{+\bullet} \rightarrow \ (CH_3)_3C^+ \ + \ \ \dot{C}H_2OH \ or \ \dot{C}H_3O \ \ (allow \ dot \ anywhere)$$

or
$$[C_5H_{12}O]^{+\bullet}$$
 (1) or $C_4H_9^+$ (1) for radical

(3 marks)

(c)
$$CDCl_3$$
 or CCl_4 or D_2O or C_6D_6 (1)

V has peak at $\delta = 2.1$ - 2.6 (and W doesn't) or

W has peak at
$$\delta = 3.7 - 4.1$$
 (and V doesn't) (1)

Allow δ for **W** is higher than δ for **V** or peak for **W** is further to left etc

but if use numbers both must be correct.

(4 marks)

Total 16 marks