ERRATUM NOTICE

General Certificate of Education January 2009 Advanced Level Examination

CHEMISTRY CHM4

Unit 4 Further Physical and Organic Chemistry

Tuesday 20 January 2009 9.00 am to 10.30 am

Instructions to Invigilators

Before the start of the examination please ask candidates to amend their question papers as follows. (Please read out this message twice to ensure understanding.)

Turn to Page 12, Question 5(c) (ii)

Cross out the number '4' and insert the number '6' in its place.

Surname					Other	Names				
Centre Number						Candidate Number				
Candidate Signat	ure									

For Examiner's Use

General Certificate of Education January 2009 Advanced Level Examination

CHEMISTRY CHM4 Unit 4 Further Physical and Organic Chemistry

Tuesday 20 January 2009 9.00 am to 10.30 am

For this paper you must have

• a calculator.

Time allowed: 1 hour 30 minutes

Instructions

- Use black ink or black ball-point pen.
- Fill in the boxes at the top of this page.
- Answer all questions.
- Answer the questions in Section A and Section B in the spaces provided. Answers written in margins or blank pages will not be marked.
- Show all your working.
- Do all rough work in this book. Cross through any work you do not want to be marked.
- The Periodic Table/Data Sheet is provided on pages 3 and 4. Detach this perforated sheet at the start of the examination.
- **Section B** questions are provided on a perforated sheet. Detach this sheet at the start of the examination.

Information

- The maximum mark for this paper is 90.
- The marks for questions are shown in brackets.
- You are expected to use a calculator where appropriate.
- Write your answers to the questions in **Section B** in continuous prose, where appropriate. You will be assessed on your ability to use good English, to organise information clearly, and to use specialist vocabulary where appropriate.

Advice

• You are advised to spend about 1 hour on **Section A** and about 30 minutes on **Section B**.

For Examiner's Use							
Question	Mark	Question	Mark				
1							
2							
3							
4							
5							
6							
7							
8							
Total (Co	lumn 1)	\rightarrow					
Total (Column 2) —>							
TOTAL							
Examiner's Initials							

SECTION A

Answer all questions in the spaces provided.

1	In th	is que	stion, give all values of pH to 2 decimal places.
1	(a)	(i)	Write an expression for pH.
1	(a)	(ii)	Calculate the pH of a 0.150 mol dm ⁻³ solution of hydrochloric acid.
			(2 marks)
1	(b)	A 60 neutr	$0.0 \mathrm{cm^3}$ sample of $0.0850 \mathrm{mol}\mathrm{dm^{-3}}$ aqueous potassium hydroxide was partially ralised by the addition of $30.0 \mathrm{cm^3}$ of $0.150 \mathrm{mol}\mathrm{dm^{-3}}$ hydrochloric acid.
1	(b)	(i)	Calculate the number of moles of potassium hydroxide used.
1	(b)	(ii)	Calculate the number of moles of hydrochloric acid added.
1	(b)	(iii)	Calculate the number of moles of potassium hydroxide remaining in excess in the solution formed and hence calculate the pH at 298 K of this solution.
			Moles of KOH
			pH of solution formed
			(7 marks)

The Periodic Table of the Elements

■ The atomic numbers and approximate relative atomic masses shown in the table are for use in the examination unless stated otherwise in an individual question.

														_
0				39.9 Ar	Argon 18	83.8 7.	Krypton 36	131.3 Xe		222.0 Rn			175.0 Lu Lutetium 71	(260) Lr
=		19.0 T	Fluorine 9	32.5 C	Chlorine 7	9.9 P	Bromine 5	26.9 –	lodine 53	210.0 At	Astatine 85		173.0 Yb Ytterbium 70	(259) Nobelium
5		0.9 O	Oxygen 8	32.1 S	Sulphur 16	.9.0 Se	Selenium 34	127.6 Te	Tellurium 52	210.0 Po	Polonium 84		168.9 Tm Thulium 69	(258) Md
>		14.0 N	Nitrogen 7	31.0 32.1 38	Phosphorus 15	74.9 As	Arsenic 33	121.8 Sb	Antimony 51	209.0 Bi	Bismuth 83		167.3 Er Erbium 58	(257) Fm Fermium
≥		12.0 C	Carbon 6	28.1 Si	Silicon 14	72.6 Ge	Ε	118.7 Sn	Tin 50				164.9 Ho Holmium 57	(252) Es Einsteinium
≡		10.8 B	Boron 5	27.0 28.1 Si	Aluminium 13	69.7 Ga	Gallium 31	114.8 n	Indium 19	204.4 T	Thallium 31		162.5 The state of	252.1 (Californium 1
		1		1.1			Zinc 30	1	Cadmium 48	200.6 Hg	d Mercury 80		140.9 144.2 144.9 150.4 152.0 157.3 158.9 162.5 164.9 167.3 168.9 173.0 175.0 Praseodymium Noodymium No	247.1 Bk Berkelium (
								107.9 Ag	Silver 17	197.0 Au	Gold F		157.3 G d Sadolinium	Curium
						Ę	Vickel	6.4 Pd	ılladium	<u>4</u>	atinum		152.0 Eu um Europium 63	243.1 Shericium
						28.9 S	Cobalt 27	102.9 Rh	um Technetium Ruthenium Rhodium Pa 43 44 45 46 46	192.2 r	Iridium 77		150.4 Sm Samarium 62	239.1 Pu
						55.8 Fe	Iron 26	101.1 Ru	Ruthenium 44	190.2 Os	Osmium 76		144.9 Pm Promethium	237.0 Np Neptunium
		-6.9 L	Lithium 3			54.9 Mn	Manganese 25	98.9 Tc	Technetium 43	186.2 Re	Rhenium 75		144.2 Nd Neodymium 60	238.0 U Uranium
						52.0 Ç	Chromium 24	95.9 Mo	Molybdenum 42	183.9 W	Tungste 74		140.9 Pr Praseodymium 59	232.0 231.0 Th Pa
		relative atomic mass -	mber —			50.9 V	Vanadium 23	92.9 Nb	Niobium 11	80.9 Ta	Tantalum 73		140.1 140.9 Pr Cerium Praseodyn 58 59	232.0 Th
	Key	relative a	atomic number			47.9 Ti	Titanium 22	91.2 Zr	Zirconium 40	178.5 H	Hafnium 72			
						45.0 Sc		88.9	Yttrium 39	138.9 La	Lanthanum Hafnium 57 * 72 7	227 Ac Actinium 89 †	nides	des
=		9.0 Be	Beryllium 4	24.3 Mg	Magnesium 12	40.1 Ca	Calcium 20	87.6 Sr	Strontium 38	137.3 Ba	Barium 56	26.0 Ra Radium 8	* 58 – 71 Lanthanides	† 90 – 103 Actinides
_	1.0 T Hydrogen 1	_	Lithium 3	23.0 Na		39.1 X		85.5 Rb	Rubidium 37	132.9 Cs	Caesium 55	223.0 Fr Francium 87 8	* 58 – 71	† 90 – 10
		'								'		,	•	•

Turn over ▶

Einsteinium 99

Californium 98

Berkelium 97

Plutonium 94

Neptunium 93

Thorium 90 232.0 **Th**

247.1 **Cm** Curium 96

Gas constant $R = 8.31 \text{ J K}^{-1} \text{ mol}^{-1}$

Table 1 Proton n.m.r. chemical shift data

Type of proton	δ/ppm
RCH_3	0.7–1.2
R_2CH_2	1.2–1.4
R_3CH	1.4–1.6
$RCOCH_3$	2.1–2.6
$ROCH_3$	3.1–3.9
$RCOOCH_3$	3.7–4.1
ROH	0.5-5.0

Table 2 Infra-red absorption data

Bond	Wavenumber/cm ⁻¹
С—Н	2850–3300
C—C	750–1100
C=C	1620–1680
C=O	1680–1750
С—О	1000–1300
O—H (alcohols)	3230–3550
O—H (acids)	2500-3000

2	In th	is que	stion, give all values of pH to 2 decimal places.
2	(a)	At 29	98 K, the pH of a 0.150 mol dm ⁻³ solution of the weak acid HX is 3.48
2	(a)	(i)	Write an expression for the acid dissociation constant, K_a , for this acid.
2	(a)	(ii)	Calculate the value of K_a for this acid, HX, at 298 K.
			(4 marks)
2	(b)	The 2.65	value of the acid dissociation constant, K_a , for a different weak acid HY is $\times 10^{-4}$ mol dm ⁻³ at 298 K.
			ulate the pH of the buffer solution formed when a 0.0300 mol sample of the solid NaY is dissolved in 500 cm ³ of a 0.250 mol dm ⁻³ solution of the acid HY.
		•••••	
		•••••	
		•••••	
		•••••	(4 marks)

8

3		_	et to reach equilibrium according to the following equation.
			$CO(g) + 2H_2(g) \rightleftharpoons CH_3OH(g)$ $\Delta H \stackrel{\circ}{=} -90.0 \text{ kJ mol}^{-1}$
	At ed	quilib	rium, 0.120 mol of CH ₃ OH was present in the gaseous mixture.
3	(a)	(i)	Calculate the number of moles of CO and of H ₂ in this equilibrium mixture.
			Moles of CO
			Moles of H ₂
3	(a)	(ii)	Calculate the mole fraction of CO in the equilibrium mixture.
			(4 marks)
3	(b)	(i)	Write a general expression to show how the partial pressure of a gas is related to its mole fraction.
3	(b)	(ii)	The total pressure of the gases in the equilibrium mixture formed in part (a) was 268 kPa. Calculate the partial pressure of CO in this mixture.
			(2 marks)
3	(c)	temp	fferent equilibrium mixture of CO, H_2 and CH_3OH was prepared at a given perature and a total pressure of 500kPa . In this mixture, the partial pressure of CO 75.0kPa and the partial pressure of H_2 was 300kPa .
3	(c)	(i)	Calculate the partial pressure of CH ₃ OH in this mixture.

3	(c)	(ii)	Write an expression for the equilibrium constant, K_p , for this reaction.
3	(c)	(iii)	Calculate a value for the equilibrium constant, K_p , at this temperature and give its units.
			Calculation
			Units
3	(d)	(i)	State the effect, if any, at a constant temperature of an increase in total pressure on the mole fraction of CH_3OH and on the value of the equilibrium constant K_p .
			Effect on mole fraction of CH ₃ OH
			Effect on K _p
3	(d)	(ii)	State the effect, if any, at a constant pressure of an increase in temperature on the mole fraction of CH_3OH and on the value of the equilibrium constant K_p .
			Effect on mole fraction of CH ₃ OH
			Effect on K _p
			(4 marks)

Turn over for the next question

4	Compound F	Reviete ac a	nair of	stereoisomers	which can	he fo	rmed fro	m compound	A
4	Compound L	• CXISIS as a	pan or	Stereorsomers	willen can	06 10	illicu ilo	iii compound <i>i</i>	1.

4	(a)	Name compound A .									
		(1 mg									

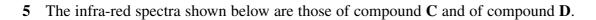
4	(0)	(1)	reaction involved.
			Reagent
			Conditions
			Type of reaction

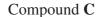
4	(b)	(ii)	Draw the structural isomer of B which is also formed from A under the same
			conditions.

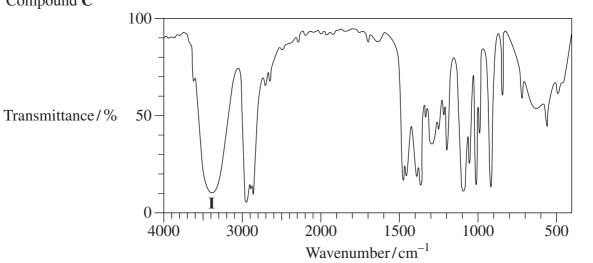
(4 marks)

4 (c) (i) Name the type of stereoisomerism shown by **B**.

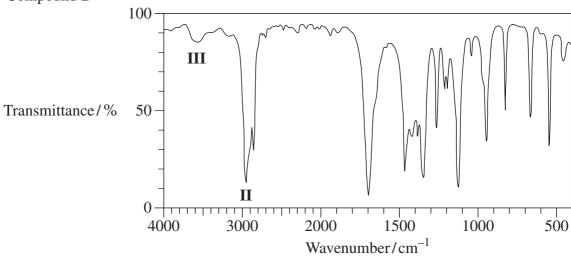
4 (c) (ii) Explain why this type of stereoisomerism is possible in **B**.


(3 marks)


12


4	(d)	(i)	Suggest why the mass spectrum of A ($C_6H_{13}Br$) contains two molecular ion peaks of almost equal intensity at $m/z = 164$ and $m/z = 166$
4	(d)	(ii)	There is a major peak at $m/z = 85$ in the mass spectrum of A . Draw the structure of the species which gives rise to this peak. Give one reason why this peak is a major one.
			Structure
			Reason
			(4 marks)

Turn over for the next question



Compound **D**

In the laboratory, a student converted C ($C_6H_{14}O$) into D ($C_6H_{12}O$) by heating C with acidified potassium dichromate(VI).

5	(a)	(i)	Identify the bonds responsible for the absorptions labelled I and II in the
			infra-red spectra above.

I	
TI	

5 (a) (ii) The absorption labelled **III** is due to an impurity present in the sample of **D** made by the student. Suggest one possible impurity which would produce this absorption.

•••••	•••••	• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •	••••
			(3 mar	cke)

(3 marks)

5 (b) The proton n.m.r. spectrum of \mathbb{C} ($\mathbb{C}_6H_{14}O$) shows 4 peaks.

The table below gives the chemical shifts, δ values, for each of these peaks, together with their splitting patterns and integration values.

δ/ppm	3.47	1.63	1.12	0.89
Splitting pattern	quartet	singlet	doublet	singlet
Integration value	1	1	3	9

State what can be deduced about the structure of ${\bf C}$ from the presence of the following in its proton n.m.r. spectrum.

	5	(b)	(i)	The singlet peak at $\delta = 0.89$
--	---	-----	-----	-------------------------------------

5	(b)	(ii)	The two	peaks at δ =	= 3.47	and δ =	= 1.12
---	-----	------	---------	---------------------	--------	----------------	--------

5	(b)	(iii)	Use the information in	part (a) and	l part (b) to deduce the structure of (
	(-)	()			

(4 marks)

Question 5 continues on the next page

5	(c)	Draw the structures of the alcohols described below which are isomers of \mathbb{C} ($\mathbb{C}_6H_{14}O$):
5	(c)	(i) a compound which is unaffected by acidified potassium dichromate(VI) and has 4 peaks in its proton n.m.r. spectrum,
5	(c)	(ii) a compound which exists as optical isomers and has 4 peaks in its proton n.m.r. spectrum.
		(2 marks)
5	(d)	Draw the structure of an alcohol which is an isomer of \mathbf{D} ($C_6H_{12}O$) but which has no absorption between 1620 and 1680 cm ⁻¹ in its infra-red spectrum.
		(1 mark)

6	(a) (i)		ature is	tion between compounds $k[\mathbf{E}][\mathbf{F}]^2$	s E and F at a given	
		of E is	$0.76 \mathrm{mol}\mathrm{dm}^{-3}$ and the i		hen the initial concentration is 1.22 mol dm ⁻³ . Calculate tate its units.	
		Value o	of k			· • • •
		•••••				· ···
						· • • •
		Units o	of k			· ···
						· • • •
6	(a) (ii) (b) The	the san	ne time the concentration	on of F is halved but the	ation of E is doubled and temperature is not change (4 mark petween compounds G an	d. (xs)
v			ant temperature.	y studying the reaction of	setween compounds of an	u
	Expe	eriment	Initial concentration of G /mol dm ⁻³	Initial concentration of H /mol dm ⁻³	Initial rate/ mol dm ⁻³ s ⁻¹	
		1	0.20	0.25	6.80×10^{-3}	
		2	0.30	0.25	15.3×10^{-3}	
		3	0.60	0.50	61.2×10^{-3}	
6	(b) (i)	Deduce	e the order of reaction v	with respect to G .		

Turn over ▶

(2 marks)

SECTION B

Detach this perforated sheet.

Answer both questions 7 and 8 in the spaces provided on page 14 and pages 17–20.

7 Consider the reaction sequence shown below.

7 (a) Compound **J** is produced by the reaction of methylbenzene with the NO₂⁺ ion. This ion is formed by the reaction of concentrated nitric acid with concentrated sulphuric acid.

State the role of concentrated nitric acid in its reaction with concentrated sulphuric acid.

Name and outline a mechanism for the reaction of methylbenzene with the NO_2^{+} ion. (5 marks)

7 (b) Name the type of reaction involved in the conversion of J into K (Reaction 2).

Draw the structure of the compound formed when compound K reacts with methanol in the presence of a small amount of concentrated sulphuric acid.

(2 marks)

7 (c) Compound L is prepared by the reduction of K in Reaction 3.

Give reagents and write an equation for Reaction 3. Use [H] to represent the reducing agent.

(2 marks)

7 (d) In the presence of a catalyst, L can polymerise.

Name the type of polymerisation which occurs. Draw the repeating unit of the polymer and name the type of linkage involved.

(3 marks)

12

8 The intermediates, X and Y, shown below are formed by nucleophilic attack on two different compounds containing a carbonyl group.

 ${f 8}$ (a) Outline a mechanism for the complete reaction in which ${f X}$ is an intermediate. Name the final product formed from ${f X}$.

(5 marks)

8 (b) Outline a mechanism for the complete reaction in which \mathbf{Y} is an intermediate. Name this mechanism and name the final organic product formed from \mathbf{Y} .

(6 marks)

8 (c) Species **Z** is shown below.

Name the type of species of which Z is an example and draw the product formed when Z reacts with an excess of aqueous sodium hydroxide.

(*2 marks*)

8 (d) Aspirin is an ester prepared industrially by the reaction of ethanoic anhydride with 2-hydroxybenzenecarboxylic acid shown below.

Write an equation for this reaction showing clearly the structure of aspirin. Give **two** reasons why ethanoyl chloride is not used in this industrial preparation.

(5 marks)

END OF QUESTIONS

18

Copyright © 2009 AQA and its licensors. All rights reserved.

