Surname				Other	Names			
Centre Numb	er				Candida	ate Number		
Candidate Sig	natu	ıre						

For Examiner's Use

General Certificate of Education June 2009 Advanced Level Examination

CHEMISTRY CHM4 Unit 4 Further Physical and Organic Chemistry

Thursday 11 June 2009 1.30 pm to 3.00 pm

For this paper you must have

· a calculator.

Time allowed: 1 hour 30 minutes

Instructions

- Use black ink or black ball-point pen.
- Fill in the boxes at the top of this page.
- Answer all questions.
- Answer the questions in Section A and Section B in the spaces provided. Answers written in margins or on blank pages will not be marked
- All working must be shown.
- Do all rough work in this book. Cross through any work you do not want to be marked.
- The Periodic Table/Data Sheet is provided on pages 3 and 4. Detach this perforated sheet at the start of the examination.
- **Section B** questions are provided on a perforated sheet. Detach this sheet at the start of the examination.

Information

- The maximum mark for this paper is 90.
- The marks for questions are shown in brackets.
- You are expected to use a calculator where appropriate.
- Write your answers to the questions in **Section B** in continuous prose, where appropriate.
- You will be assessed on your ability to use an appropriate form and style of writing, to organise relevant information clearly and coherently, and to use specialist vocabulary, where appropriate.

Advice

• You are advised to spend about 1 hour on **Section A** and about 30 minutes on **Section B**.

For Examiner's Use						
Question	Mark	Question	Mark			
1						
2						
3						
4						
5						
6						
7						
8						
Total (Co	lumn 1)	\rightarrow				
Total (Co	lumn 2) –	\rightarrow				
TOTAL						
Examine	r's Initials					

SECTION A

Answer all questions in the spaces provided.

1 (a) The initial rate of the reaction between the gases P and Q was measured in a series of experiments at a constant temperature and the following rate equation was determined.

rate =
$$k[\mathbf{P}][\mathbf{Q}]^2$$

1 (a) (i) Complete the table of data below for the reaction between P and Q.

Expt	Initial [P]/mol dm ⁻³	Initial [Q]/mol dm ⁻³	Initial rate/mol dm ⁻³ s ⁻¹
1	1.2×10^{-3}	2.0×10^{-3}	1.8×10^{-5}
2		2.0×10^{-3}	2.7×10^{-5}
3	0.60×10^{-3}	6.0×10^{-3}	
4	1.8×10^{-3}		0.30×10^{-5}

(3 marks)

1	(a)	(ii)	Using the data from Experiment 1, calculate a value for the rate constant state its units.	ant, k , and
			Calculation	
			Units	
				(3 marks)

The Periodic Table of the Elements

■ The atomic numbers and approximate relative atomic masses shown in the table are for use in the examination unless stated otherwise in an individual question.

0	4.0 He Helium	20.2 Ne	Neon 10	39.9 Ar	Argon 18	83.8 K	Krypton 36	131.3 Xe	Xenon 54	222.0 Rn	Radon 86			175.0	Lutetium
=		0.6 T	Fluorine	<u>5.5</u>	Chlorine 7	9.9 B	Bromine 5	126.9 	lodine 53	210.0 At	Astatine 85			173.0 Vb	Ytterbium
>		0.9	Oxygen 3	32.1 S	Sulphur 16	.9.0 Se	Selenium 34	127.6 Te	Tellurium 52	210.0 Po	Polonium 84			168.9 Tm	Thulium
>		12.0 14.0 N	Nitrogen 7	31.0 P	Phosphorus 15	74.9 As	m Arsenic Selenium 33 34 3	121.8 Sb	Antimony 51	209.0 Bi	Bismuth 83			167.3 Fr	Erbium
≥		ပ	Carbon	 Si.	Silicon 14	72.6 Ge	Germanium 32		Tin 50					164.9 Ho	Holmium
=		10.8 B	Boron 5	27.0 AI	Aluminiu 13	39.7 Ga	Gallium 31	114.8 n	Indium 19	204.4 T	Thallium 81			162.5	Dysprosium
						65.4 Zn	Zinc 30	112.4 Cd	Cadmium 48	200.6 Hg				140.9 144.2 144.9 150.4 152.0 157.3 158.9 162.5 164.9 167.3 168.9 173.0 175.0 11.0 175.0 11	Terbium
						63.5 Cu	Copper 29	107.9 Ag	Silver 47					157.3 Gd	Gadolinium
							<u></u>		Ē		Ē			152.0 Fi	Europium
						58.9 Co	Cobalt 27	102.9 Rh	Rhodium 45	192.2 Ir	Iridium 77			150.4 See	Samarium
						55.8 Fe	Iron 26	101.1 Ru	Ruthenium 44	190.2 Os	Osmium 76			144.9 Pm	Promethium
		-6.9 Li	Lithium 3			54.9 Mn	Scandium Titanium Vanadium Chromium Manganese Iron Cobalt Nicke 21 22 23 24 25 26 27 28	98.9 Tc	Technetium 43	186.2 Re	Rhenium 75			144.2 NA	Neodymium
						ن در	Chromium 24	95.9 Mo	Molybdenum 42	183.9 W	Tungsten 74			140.9 Pr	Prase odymium
		relative atomic mass -	umber —			50.9 V	Vanadium 23	95.9 QN	Niobium 41	180.9 Ta	Tantalum 73			140.1 140.9 Dr	Cerium
	Key	relative a	atomic number			47.9 Ti	Titanium 22	91.2 Zr	Zirconium 40	178.5 Hf	Hafnium 72				
						45.0 Sc	Scandium 21	88.9 Y	Yttrium 39	138.9 La	Lanthanum Hafnium 57 * 72	227 Ac	Actinium 89 †		nides
=		9.0 Be		24.3 Mg	_	40.1 Ca	Calcium 20	87.6 Sr	Strontium 38	137.3 Ba		226.0 Ra	Radium 88		* 58 - 71 Lanthanides
-	1.0 H Hydrogen 1		Lithium 3	23.0 Na	_	39.1 X		85.5 Rb		132.9 Cs	Caesium 55	223.0 Fr	Francium 87		* 58 – 7

+ C C C C C C C C C C C C C C C C C C C	140.1 Ce	140.9 Pr	144.2 Nd	144.9 Pm	150.4 Sm	152.0 Eu	157.3 Gd	l	162.5 Dy	164.9 Ho	167.3 Er			175.0 Lu
36 - 71 Laninanides	Cerium 58	Praseodymium 59	Neodymium 60	Promethium 61			⊑	Terbium 65	Dysprosium 66	Holmium 67		Thulium 69		Lutetium 71
00 t	232.0 Th	231.0 h Pa	238.0 U	237.0 Np	- D	_ E	247.1 Cm		252.1 Cf		_	(258) Md	(259) No	(260) Lr
90 - 103 Acumdes	Thorium 90	Protactinium 91	_	Ε	Plutonium 94			Berkelium 97	Californium 98			Mendelevium 101	Nobelium 102	Lawrencium 103

Turn over ▶

Gas constant $R = 8.31 \text{ J K}^{-1} \text{ mol}^{-1}$

Table 1
Proton n.m.r. chemical shift data

Type of proton	δ/ppm
RCH_3	0.7–1.2
R_2CH_2	1.2–1.4
R_3CH	1.4–1.6
$RCOCH_3$	2.1–2.6
$ROCH_3$	3.1–3.9
$RCOOCH_3$	3.7-4.1
ROH	0.5-5.0

Table 2 Infra-red absorption data

Bond	Wavenumber/cm ⁻¹
С—Н	2850-3300
С—С	750–1100
C=C	1620–1680
C=O	1680–1750
С—О	1000-1300
O—H (alcohols)	3230–3550
O—H (acids)	2500-3000

1	(b)	The decomposition of compound \mathbf{R} is a zero order reaction.	
		On the axes below sketch a line to show the relationship between the initial rareaction of $\bf R$ and the initial concentration of $\bf R$ at constant temperature.	ate of
		Initial rate	
		Initial [R]	(1 mark)

Turn over for the next question

4	ווווע	irogei	i tetraoxide dissociates into introgen dioxide as snown in the equation below.
			$N_2O_4(g) \Longrightarrow 2NO_2(g)$
2	(a)	a giv	n experiment, 1.20 mol of dinitrogen tetraoxide were sealed in a flask and heated to wen temperature. The equilibrium mixture formed at this temperature contained mol of nitrogen dioxide.
		Calc	culate the mole fraction of nitrogen dioxide present in this equilibrium mixture.
		•••••	
		•••••	
		•••••	(3 marks)
2	(b)	temp	second experiment, a different equilibrium mixture was established at a different perature. In this mixture, the mole fraction of nitrogen dioxide was found to be at a total pressure of 180 kPa.
2	(b)	(i)	Write a general expression to show how the partial pressure of a gas is related to its mole fraction.
			(1 mark)
2	(b)	(ii)	Calculate the partial pressure of nitrogen dioxide in this mixture and hence deduce the partial pressure of dinitrogen tetraoxide.
			Partial pressure of nitrogen dioxide
			Partial pressure of dinitrogen tetraoxide
			(2 marks)

10

2	(c)	whic	third experiment at a given temperature, an equilibrium mixture is formed in the partial pressure of NO_2 is 49.6 kPa and the partial pressure of N_2O_4 is 0 kPa.
2	(c)	(i)	Write an expression for the equilibrium constant, K_p , for this equilibrium.
			(1 mark)
2	(c)	(ii)	Calculate a value for K_p for this equilibrium at this temperature and give its units.
			Calculation
			Units
			(3 marks)

Turn over for the next question

3	In th	is que	estion, give all values of pH to 2 decimal places.
3	(a)	(i)	Write an expression for the term pH .
			(1 mark)
3	(a)	(ii)	A 5.0 cm ³ sample of 0.135 mol dm ⁻³ hydrochloric acid is added to 995 cm ³ of water. Calculate the pH of the solution formed.
			(2 marks)
3	(b)	At 2 acid	98 K, the value of the dissociation constant for the weak acid 2-chloropropanoic (CH ₃ CHClCOOH), $K_a = 1.48 \times 10^{-3} \mathrm{mol dm}^{-3}$.
3	(b)	(i)	Write an expression for the dissociation constant, K_a , for 2-chloropropanoic acid.
			(1 mark)
3	(b)	(ii)	Calculate a value for the pH of a 0.350 mol dm ⁻³ solution of 2-chloropropanoic acid at this temperature.
			(3 marks)

3 (c)	The dissociation of 2-chloropropanoic acid in aqueous solution is an endothermic reaction. Predict how the pH of an aqueous solution of 2-chloropropanoic acid would change, if at all, when the temperature of the solution is increased. Explain your prediction.
	Effect on pH
	Explanation
	(3 marks)
3 (d)	Name the type of stereoisomerism shown by 2-chloropropanoic acid. State how you could distinguish between separate samples of its stereoisomers.
	Type of stereoisomerism
	How to distinguish between stereoisomers
	(3 marks)
3 (e)	A buffer solution has a pH of 4.69 and contains 0.15 mol of propanoic acid and 0.10 mol of sodium propanoate. Use these data to calculate a value of K_a for propanoic acid.
	(3 marks)

16

4	(a)	(i)	Give the meaning of the term <i>Brønsted–Lowry base</i> .
			(1 mark)
4	(a)	(ii)	State which of ammonia and butylamine (CH ₃ CH ₂ CH ₂ CH ₂ NH ₂) is the stronger base. Explain your answer.
			Stronger base
			Explanation
			(3 marks)
4	(b)	Drav	w the structure of the tertiary amine which is an isomer of butylamine.
			(1 mark)
4		(*)	
4	(c)	(i)	Draw the structure of the species formed when the amine CH ₃ (CH ₂) ₁₇ NH ₂ reacts with an excess of CH ₃ Br
			(1 mark)
4	(c)	(ii)	Name the type of compound formed in part (c) (i) and give a use for such
•	(0)	(11)	compounds.
			Type of compound
			Use(2 marks)
	(1)	(*)	
4	(d)	(i)	Name compound Z shown below.
			CH_3 $-C$ $-NHCH_3$
			Z
			(1 mark)

4 (d) (ii) Name and outline a mechanism for the reaction in which ${\bf Z}$ is formed from CH_3NH_2 and CH_3COCl

Name of mechanism

Mechanism

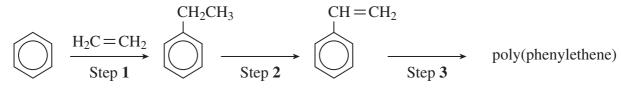
(5 marks)

4 (e) Consider the amino acid *alanine*

concentrated sulphuric acid.

$$H_2N - C - COOH$$
 H

Complete the table below to show the structure of the species formed when alanine


dissolves in water	
reacts with hydrochloric acid	
reacts with methanol in the presence of a small amount of	

(*3 marks*)

17

5 Poly(phenylethene) can be manufactured from benzene and ethene as shown below.

ethylbenzene

phenylethene

5 (a) (i) Identify two other substances needed to carry out the reaction in Step 1.

Write an equation for the reaction of these two substances with ethene to form the reactive intermediate CH₃CH₂⁺

Substance 1

Substance 2

Equation

(3 marks)

(a) (ii) Name and outline a mechanism for the reaction of this intermediate with benzene in Step 1.

Name of mechanism

Mechanism

(4 marks)

5 An alternative way of making ethylbenzene from benzene uses chloroethane instead of ethene. Give one reason why ethene is the preferred reagent.

(1 *mark*)

10

5	(c)	Draw the repeating unit of poly(phenylethene) and name the type of polymerisation involved in its formation.	
		Repeating unit	
		Type of polymerisation	

Turn over for the next question

SECTION B

Detach this perforated sheet.

Answer **Questions 6** to **8** in the space provided on page 14 and pages 17 to 20 of this booklet.

- **6** Compounds **A** to **F** are all isomers of $C_6H_{10}O_4$
- **6** (a) Isomer **A** (HOOC(CH₂)₄COOH) is used to make nylon 6,6

Name A and draw the repeating unit of nylon 6,6

Draw the structure of the anhydride formed when one molecule of water is lost by one molecule of **A** (4 marks)

- **6** (b) Draw the structure of Isomer **B** ($C_6H_{10}O_4$), a dicarboxylic acid which contains two chiral centres. (1 mark)
- **6** (c) Isomer **C** is a propyl ester which also contains a carboxylic acid group.

Draw the structure of **C**

(1 mark)

6 (d) Isomer **D** is the diester shown below. Some of the protons have been labelled.

Deduce the number of peaks in the proton n.m.r. spectrum of **D**

Use **Table 1** of the Data Sheet to predict the δ range of the peaks produced by the protons labelled a and b. (3 marks)

6 (e) Isomer **E** is the dicarboxylic acid shown below. Some of the protons have been labelled.

The protons labelled c and d each produce a peak in the proton n.m.r. spectrum.

Name the splitting pattern of the peak due to the protons labelled c and name the splitting pattern of the peak due to the proton labelled d. (2 marks)

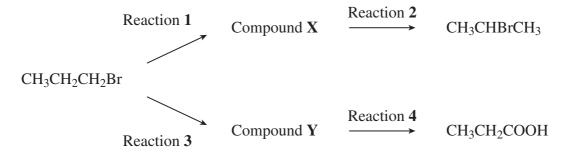
 $\mathbf{6}$ (f) Isomer \mathbf{F} is shown below.

$$\begin{matrix} O & O \\ \parallel & \parallel \\ CH_3CH_2-O-C-C-O-CH_2CH_3 \end{matrix}$$

The mass spectrum of Isomer F contains major peaks at m/z = 45 and m/z = 29

Draw the structure of the fragment which causes the peak at m/z = 45

Write an equation for the fragmentation of the molecular ion to produce the fragment which causes the peak at m/z = 29 (3 marks)


Turn over for the next question

7 Consider the reaction sequences shown below.

Reaction 1 is an elimination.

Reaction 3 is a substitution.

Identify compounds **X** and **Y**.

Give reagents and conditions for each of Reactions 1, 2, 3 and 4.

(9 marks)

8 An aqueous solution contained both sodium carbonate and sodium hydrogencarbonate.

A 25.0 cm³ sample of the solution was transferred into a conical flask. After the addition of a few drops of phenolphthalein, 0.150 mol dm⁻³ hydrochloric acid was then added from a burette.

The indicator changed colour when exactly 20.80 cm³ of the 0.150 mol dm⁻³ hydrochloric acid had been added to the conical flask. This end-point showed that the reaction in Stage 1 had been completed.

Stage 1
$$CO_3^{2-} + H^+ \longrightarrow HCO_3^-$$

A few drops of methyl orange were then added to the conical flask. A further 33.25 cm³ of 0.150 mol dm⁻³ hydrochloric acid were required before this second indicator changed colour. This end-point showed that the reaction in Stage 2 had been completed.

Stage 2
$$HCO_3^- + H^+ \longrightarrow CO_2 + H_2O$$

- **8** (a) Use the data about Stage **1** to calculate the concentration of sodium carbonate in the original solution. (3 marks)
- 8 (b) State why the volume of hydrochloric acid used in Stage 2 is greater than that used in Stage 1. Hence calculate the concentration of sodium hydrogenearbonate in the original solution.

 (4 marks)

END OF QUESTIONS

Copyright © 2009 AQA and its licensors. All rights reserved.

