Mark scheme
June 2003

GCE

Chemistry

Unit CHM5

Copyright © 2003 AQA and its licensors. All rights reserved.
SECTION A

Answer all questions in the spaces provided.

1. Consider the following oxides:

\[\text{Na}_2\text{O}, \text{MgO, Al}_2\text{O}_3, \text{SiO}_2, \text{P}_4\text{O}_{10}, \text{SO}_3 \]

(a) Identify one of the oxides from the above which

(i) can form a solution with a pH less than 3 \[\text{P}_4\text{O}_{10} \text{ or } \text{SO}_3 \] (1)

(ii) can form a solution with a pH greater than 12 \[\text{Na}_2\text{O} \] (1)

(2 marks)

(b) Write an equation for the reaction between

(i) \(\text{MgO} \) and \(\text{HNO}_3 \)

\[\text{MgO} + 2\text{H}^+ \rightarrow \text{Mg}^{2+} + \text{H}_2\text{O} \]

(1)

(ii) \(\text{SiO}_2 \) and \(\text{NaOH} \)

\[2\text{NaOH} + \text{SiO}_2 \rightarrow \text{Na}_2\text{SiO}_3 + \text{H}_2\text{O} \]

(1)

(iii) \(\text{Na}_2\text{O} \) and \(\text{H}_3\text{PO}_4 \)

\[3\text{Na}_2\text{O} + 2\text{H}_3\text{PO}_4 \rightarrow 2\text{Na}_3\text{PO}_4 + 3\text{H}_2\text{O} \text{ etc} \]

(3 marks)

(c) Explain, in terms of their type of structure and bonding, why \(\text{P}_4\text{O}_{10} \) can be vaporised by gentle heat but \(\text{SiO}_2 \) cannot.

\(\text{P}_4\text{O}_{10} \) is a molecular (structure) or simple covalent (1)

Weak intermolecular forces or van der Waals forces (between molecules) (1)

\(\text{SiO}_2 \) is macromolecule/giant covalent/giant molecule (Not giant-lattice) (1)

(Strong) covalent bonds (between atoms) must be broken (4 marks)
2 (a) Identify a reagent, or mixture of reagents, necessary to carry out each of the following conversions.

(i) \([\text{Cr(H}_2\text{O)}_6^{3+}]^{\text{(aq)}} \rightarrow \text{CrO}_4^{2-}\) (aq) \\
\(\text{H}_2\text{O}_2\) (aq) \(\text{plus}\) \(\text{NaOH}\) (aq) \\
\(\text{Na}_2\text{O}_2\) (aq) \(\text{scores}\) (2) \\
\(\text{Alkaline} \text{H}_2\text{O}_2\) \(\text{scores}\) (1) \\
\(\text{only allow: if } \text{H}_2\text{O}_2 \text{ given}\) \\

(ii) \(\text{VO}_2^+\) (aq) \(\rightarrow\) \([\text{V(H}_2\text{O)}_6^{2+}]\) (aq) \\
\(\text{Zn}\) (1) \(\text{plus}\) \(\text{HCl/H}_2\text{SO}_4\) (1) \(\text{Ignone cone}\) \\
\(\text{Only allow: if } \text{Zn given} \text{ not } \text{HNO}_3\) \\

(iii) \([\text{Ag(NH}_3)_2]^+\) (aq) \(\rightarrow\) Ag(s) \\
\(\overline{\text{A named aldehyde or a correct formula clearly}}\) (1) \\
\(\text{with an aldehyde group}\) (5 marks)

(b) In an acidic solution, hydrogen peroxide, \(\text{H}_2\text{O}_2\), is oxidised to oxygen by manganate(VII) ions, which are reduced to Mn\(^{2+}\) ions.

(i) Write half-equations for the reactions occurring and use these to deduce the overall equation for this reaction.

\(\text{Half-equation for the oxidation of } \text{H}_2\text{O}_2\)
\(\text{H}_2\text{O}_2 \rightarrow \text{O}_2^+ + 2\text{H}^+ + 2\text{e}^- \) (or \(\text{multiple}\)) (1)

\(\text{Half-equation for the reduction of manganate(VII) ions}\)
\(\text{MnO}_4^- + 8\text{H}^+ + 5\text{e}^- \rightarrow \text{Mn}^{2+} + 4\text{H}_2\text{O} \) (or \(\text{multiple}\)) (1)

\(\text{Overall equation}\)
\(\text{Only allow}: \)
\(2\text{MnO}_4^- + 5\text{H}_2\text{O}_2 + 6\text{H}^+ \rightarrow 2\text{Mn}^{2+} + 5\text{O}_2 + 8\text{H}_2\text{O} \) (or \(\text{multiple}\)) (1)
(ii) 20.0 cm3 of an acidified solution of H$_2$O$_2$ was found to react with exactly 15.7 cm3 of a 0.0180 mol dm$^{-3}$ solution of potassium manganate(VII). Calculate the concentration, in g dm$^{-3}$, of the solution of hydrogen peroxide.

(If you have been unable to complete the overall equation in part (b)(i), assume that the mole ratio of manganate(VII) to H$_2$O$_2$ is 3:5. This is not the correct ratio.)

\[
\text{Moles MnO}_4^- = \frac{mV}{1000} = \left(\frac{2.82 \text{ to } 2.83}{2.83}\right) \times 10^{-4} \quad (1)
\]

\[
\text{Moles } \text{H}_2\text{O}_2 = 2.826 \times 10^{-4} \times \frac{5}{2} \quad (1) = \left(7.06 \text{ to } 7.08\right) \times 10^{-4}
\]

\[
[\text{H}_2\text{O}_2] = 7.065 \times 10^{-4} \times \frac{1000}{20} \quad (1) = \left(3.53 \text{ to } 3.54\right) \times 10^{-2}
\]

\[
[\text{H}_2\text{O}_2] = \text{ moles } \times \text{ M} = 3.53 \times 10^{-2} \times 34
\]

\[
\text{Mass} = 1.2(0) \quad \text{(Ignore units)} \quad (1)
\]

Max 3 in ratio $\frac{7}{5}$ used. (Final answer 0.19)

(Note Using 3:5 ratio

\[
\text{Moles MnO}_4^- = \left(\frac{2.82 \text{ to } 2.83}{2.83}\right) \times 10^{-4} \quad (1)
\]

\[
\text{Moles } \text{H}_2\text{O}_2 = 2.826 \times 10^{-4} \times \frac{5}{3} \quad (1) = \left(4.70 \text{ to } 4.71\right) \times 10^{-4}
\]

\[
[\text{H}_2\text{O}_2] = 4.71 \times 10^{-4} \times \frac{1000}{20} \quad (1) = \left(2.35 \text{ to } 2.36\right) \times 10^{-2}
\]

\[
\text{Mass} = 0.8(0) \quad (1) \quad \text{(i.e. 2 significant figures required)}
\]

TURN OVER FOR THE NEXT QUESTION
3 (a) The ion \(\text{C}_2\text{O}_4^{2-} \) can act as a bidentate ligand.

(i) Explain the meaning of the term *bidentate ligand*.

- Too (1) lone pair donor/electron pair donor (1) atoms
- Allow :- found two co-ordinate bonds (1)
- NOT atom with two lone pairs (0)

(ii) Sketch the structure of the octahedral complex ion formed by \(\text{Fe}^{3+} \) ions which contains \(\text{C}_2\text{O}_4^{2-} \) as the only ligand. Include the overall charge on the complex ion.

(b) Explain the meaning of the term *chelate effect*.

(Substitution of a monodentate ligand by a bidentate ligand (1) giving a more stable complex or with an increase in entropy/disorder or (2 marks)

(c) The chloride ion can act as a monodentate ligand.

(i) Deduce the formula of the linear complex formed when an excess of concentrated hydrochloric acid is added to silver chloride.

\[
[\text{AgCl}_2]^- \text{ or } \text{AgCl}_2^-(1)
\]

(ii) Explain why metal(II) ions do not usually form octahedral complexes when chloride ions are the only ligands.

- Chloride or \(\text{Cl}^- \) big or large or repel (1)
- NOT \(\text{Cl}_2 \) or \(\text{Cl}^+ \) or \(\text{Cl} \)
- Allow 'chlorine ion'

(2 marks)
(d) The concentration of $\text{C}_2\text{O}_4^{2-}$ ions can be determined by titration in acidic solution using a standard solution of potassium manganate(VII). At room temperature, the reaction proceeds very slowly at first but becomes faster after some of the manganate(VII) ions have reacted.

(i) Suggest why this reaction is very slow at first.

(Both) ions are negative or ions repel each other. High E° (1)

(ii) This is an example of an autocatalytic reaction. State the meaning of the term autocatalytic and identify the catalyst.

Meaning of the term autocatalytic: A product of the reaction acts as a catalyst (1). Not a self-catalysing reaction (c).

Catalyst: Mn^{4+} or H_2MnO_4^- (1)

(iii) Suggest how this catalyst might be involved in the reaction. (Allow 3 to 6)

Mn^{4+} converted into Mn^{2+} or Mn^{4+} oxidised (1)

Mn^{4+}/oxidised species then oxidises-reacts with CO_4^{2-} (5 marks)

TURN OVER FOR THE NEXT QUESTION
(a) (i) Draw a fully-labelled Born–Haber cycle for the formation of solid barium chloride, \(\text{BaCl}_2 \), from its elements. Include state symbols for all species involved.

\[
\begin{align*}
\text{Ba}^{2+} (s) + 2e^- + 2\text{Cl}^- (s) & \rightarrow 2\text{Cl}_2 \text{or} 2\text{A Ha chlorine} (l) \\
\text{Ba}^{2+} (s) + 2e^- + 2\text{Cl}^- (g) & \rightarrow 2\times \text{EA(chlorine)(l)} \\
2\text{nd IE(Ba) (l)} & \rightarrow \text{Ba}^{2+} (s) + 2\text{Cl}^- (g) \\
\text{Ba}^{2+} (g) + e^- + \text{Cl}_2 (g) & \rightarrow 1\text{st IE (Ba) (l)} \\
\text{Ba}^{2+} (g) + \text{Cl}_2 (g) & \rightarrow \text{Lattice} \text{ (formation) enthalpy of energy} \\
\text{IE} \\
\text{Scoreo (l)} & \rightarrow \text{A Ha Ba} \text{or A Ha sub (Ba) (c)} \\
\text{NOT A Ha vap BA} \\
\text{Ba} (g) + \text{Cl}_2 (g) & \rightarrow \Delta \text{Hf BaCl}_2
\end{align*}
\]

\(\text{ONLY CONSIDER SPECIES INVOLVED IN THE STEP MARKED} \)

(ii) Use your Born–Haber cycle and the standard enthalpy data given below to calculate a value for the electron affinity of chlorine.

- Enthalpy of atomisation of barium: +180 kJ mol\(^{-1}\)
- Enthalpy of atomisation of chlorine: +122 kJ mol\(^{-1}\)
- Enthalpy of formation of barium chloride: -859 kJ mol\(^{-1}\)
- First ionisation enthalpy of barium: +503 kJ mol\(^{-1}\)
- Second ionisation enthalpy of barium: +965 kJ mol\(^{-1}\)
- Lattice formation enthalpy of barium chloride: -2056 kJ mol\(^{-1}\)

Calculation

\[
\begin{align*}
\Delta \text{Hf BaCl}_2 = +180 + 503 + 965 + 2\times122 + 2\times \text{EA} - 2856 + 859 = 0 \ (l)
\end{align*}
\]

\(\text{EA} = -695/2 = -347.5 \) (4 marks)

Notes:
- +573 Scoreo (1)
- (347 to 348) Scoreo (2)
- (286 to 287) Scoreo (2)
- (286 to 287) Scoreo (1)
(b) Use data from part (a)(ii) and the entropy data given below to calculate the lowest temperature at which the following reaction becomes feasible.

\[\text{BaCl}_2(\text{s}) \rightarrow \text{Ba}(\text{s}) + \text{Cl}_2(\text{g}) \]

<table>
<thead>
<tr>
<th></th>
<th>BaCl_2(\text{s})</th>
<th>Ba(\text{s})</th>
<th>Cl_2(\text{g})</th>
</tr>
</thead>
<tbody>
<tr>
<td>(S^\circ / \text{JK}^{-1} \text{mol}^{-1})</td>
<td>124</td>
<td>63</td>
<td>223</td>
</tr>
</tbody>
</table>

\[\Delta S = \Sigma S_{\text{products}} - \Sigma S_{\text{reactants}} \]

\[= (63 + 223) - 124 = 162 \] \(\text{(1)} \)

\[\Delta G = \Delta H - T \Delta S \quad \text{or} \quad \Delta H = T \Delta S \quad \text{or} \quad T = \Delta H/\Delta S \quad \text{or used correctly} \quad \text{(1)} \]

\[\Delta H = 859 \times 10^3 \text{ J} = T \times 162 \]

\[T = (5300 \text{ to } 5304) \text{ K} \] \(\text{(4 marks)} \)

Penalize if units °C

TURN OVER FOR THE NEXT QUESTION
Ethane, from North Sea gas, can be cracked to form ethene and hydrogen. In practice, the cracking reaction is incomplete and a mixture of ethane, ethene and hydrogen is obtained.

(a) Write an equation for this cracking reaction.

\[\text{C}_2\text{H}_6 \rightarrow \text{C}_2\text{H}_4 + \text{H}_2 \]

(1 mark)

(b) Calculate the total number of moles of gas in a 25.0 cm\(^3\) sample of the gaseous mixture after cracking, measured at a temperature of 332 K and a pressure of 110 kPa.

\[n = \frac{pV}{RT} \]

\[n = \frac{110,000 \times 25 \times 10^{-6}}{8.31 \times 332} \]

\[= (1.0 \text{ to } 9.96 \times 10^{-4}) \text{ (moles)} \]

(3 marks)

(c) The 25.0 cm\(^3\) sample of the gaseous mixture from part (b) was treated with 75.0 cm\(^3\) of gaseous bromine, also measured at 332 K and 110 kPa.

(i) Calculate the number of moles of bromine added to the gaseous mixture and write an equation for the reaction between ethene and bromine.

\[\text{Equation } \text{C}_2\text{H}_4 + \text{Br}_2 \rightarrow \text{C}_2\text{H}_5\text{Br} \]

(1)

After the reaction between ethene in the gaseous mixture and bromine was complete, the unreacted bromine was treated with an excess of aqueous potassium iodide. Iodine was formed.

(ii) Write an equation for the reaction between aqueous potassium iodide and bromine.

\[2\text{KI} + \text{Br}_2 \rightarrow 2\text{KBr} + \text{I}_2 \]

or an ionic equation(1)
Iodine reacts with aqueous sodium thiosulphate according to the following equation.

\[\text{I}_2 + 2\text{Na}_2\text{S}_2\text{O}_3 \rightarrow 2\text{NaI} + \text{Na}_2\text{S}_4\text{O}_6 \]

The iodine formed reacted with 22.1 cm\(^3\) of a 0.250 mol dm\(^{-3}\) solution of sodium thiosulphate.

(iii) Calculate the number of moles of iodine formed. Hence, calculate the number of moles of bromine which reacted with the ethene present in the 25.0 cm\(^3\) sample of the gaseous mixture.

Number of moles of iodine formed

\[\text{Moles thio} = \frac{22.1 \times 0.250}{1000} = (5.52 \text{ to } 5.53) \times 10^{-3} \]

\[\text{Moles I}_2 = \frac{\text{Moles thio}}{2} = (2.76 \text{ to } 2.77) \times 10^{-3} \]

Number of moles of bromine which reacted with ethene

\[2.99 \times 10^{-3} - 2.76 \times 10^{-3} = (2.25 \text{ to } 2.41) \times 10^{-4} \]

Mark Consecutively even if answer is negative

(iv) Use these results to calculate the percentage by moles of ethene present in the gaseous mixture.

\[\% \text{ Ethene} = \left(\frac{\text{moles ethene}}{\text{total moles gas}} \right) \times 100 \]

\[= \left(\frac{2.25 \text{ to } 2.41}{1.0 \text{ to } 9.968} \right) \times 10^{-4} \]

\[= (22.4 \text{ to } 24.2) \% \]

Notes

Correct answer scores (5)

If there is no subtraction in b(ii) part two

Score max(3) two in c (iii) part are plus one in c (iv) for first point

Answer in b(iv) must be a %

TURN OVER FOR THE NEXT QUESTION

Negative final % or answers over 100% lose the last mark.
SECTION B

Answer all of the questions below in the space provided on pages 16 to 20 of this booklet.

6 (a) State what is observed when aqueous ammonia is added dropwise, until present in excess, to a solution of cobalt(II) chloride, and the mixture obtained is then left to stand in air.
 Give the formula of each cobalt-containing species formed. Explain the change which occurs when the mixture is left to stand in air.
 \(8\) marks

 (b) Explain why separate solutions of iron(II) sulphate and iron(III) sulphate of equal concentration have different pH values.
 State what is observed when sodium carbonate is added separately to solutions of these two compounds. Give the formula of each iron-containing species formed.
 \(9\) marks

7 Concentrated sulphuric acid is a useful laboratory reagent. Choosing appropriate examples, illustrate this statement by considering how you would use concentrated sulphuric acid

 (a) to distinguish between solid samples of two sodium halides, \(6\) marks

 (b) to prepare isomeric alkenes from an alcohol, \(5\) marks

 (c) to prepare an aromatic nitro-compound. \(4\) marks

Write equations for the reactions occurring and state the role(s) of sulphuric acid in each reaction.
Question 6 Answers

(a) Forms blue or pink or blue/green precipitate (Not green) of Co(H₂O)₄(OH)₂ etc (1)

(Precipitate) dissolves or forms a solution (in excess ammonia) (1)

Forms yellow or pale brown or 'straw' (coloured solution) containing [Co(NH₃)₆]²⁺ (1)

Darkens or goes brown on standing in air as [Co(NH₃)₆]³⁺ formed (1)

Due to oxidation (by O₂ in air) or by reaction with oxygen (Q of L) (1) 8

(b) Fe³⁺ has a large charge (1)

and smaller size than Fe²⁺ (1)

NB Fe³⁺ has a higher charge size ratio or higher surface density of charge or higher charge density, scores (2)

NB Lose these two marks if candidates refers to either atoms or molecules

Greater polarisation (of water) by Fe³⁺ or more hydrolysis occurs or Fe³⁺ weakens the O-H bond more. (Allow converse statements) (1)

Fe²⁺ higher pH than Fe³⁺ or Fe³⁺ more acidic or solution of Fe³⁺ contains more H⁺ (1) 4

NB Allow marks for correct hydrolysis equations i.e.

\[[\text{Fe(H}_2\text{O)}_6]^{3+} \rightleftharpoons [\text{Fe(H}_2\text{O)}_5(\text{OH})]^2+ + \text{H}^+ \]

if accompanied by a statement that this equilibrium lies further to the right for Fe³⁺ than for Fe²⁺ (1) and more H⁺ produced/pH lower (1). (Allow converse statements)

Fe²⁺ with Na₂CO₃ : green precipitate (1)

of FeCO₃ (1)

Fe³⁺ with Na₂CO₃ ; (rust)/brown or red/brown precipitate (Not red) (1)

of [Fe(H₂O)₃(OH)₃] etc (Allow Fe₂O₃.xH₂O but not Fe₂O₃) (1)

and (carbon dioxide) gas evolved (1) 5
Question 7 Answers

(a) Any two correct NaX reactions. If more than two given allow best scores.

NB Apply list principle if additional incorrect observation given.
If NaX dissolved in water awarded Max 2 for equations.
Allow molecular or ionic equations but not single half-equations.

NaF: Colourless gas or steamy fumes (1)
H₂SO₄ acts as an acid (1)
NaF + H₂SO₄ → NaHSO₄ + HF etc. (1)

NaCl: Colourless gas or steamy fumes (of HCl) (1)
H₂SO₄ acts as an acid (1)
NaCl + H₂SO₄ → NaHSO₄ + HCl etc. (1)
NB If NaF and NaCl chosen allow Max 3 unless HF stated to etch glass.

NaBr: Brown, yellow, orange or red/brown (fumes) (not red) (of bromine) (1)
NB Not SO₂ as HBr would also react with reagents used to test for it.
H₂SO₄ acts as an oxidising agent (1)
2NaBr + 2H₂SO₄ → Na₂SO₄ + Br₂ + SO₂ + 2H₂O (1)
NB A correct redox equation required for this mark.

NaI: Yellow solid(S) or Bad egg smell(H₂S) or Purple fumes or
black solid (I₂) (Allow correct observation and ignore product identity) (1)
H₂SO₄ acts as an oxidising agent (1)
One correct redox equation (1) 6

(b) A correct alcohol (1)
2 isomeric alkenes (2)
NB Allow cis/trans isomers; ignore names unless no structure given.
Equation (Ignore additional incorrect equations) (1)
H₂SO₄ acts as an acid or as a dehydrating agent or a catalyst (Q of L
so MUST be stated in words) (1) 5
NB Max 2 if alcohol incorrect.
Penalise stick structures once only unless isomer correctly named.

(c) Conc. HNO₃ (1)
Product (Allow in an equation or mechanism) (1)
Equation (Any) (Ignore additional incorrect equations) (1)
H₂SO₄ acts as an acid or as a catalyst. (Allow adds protons) (1) 4
(a) A flask containing a mixture of 0.200 mol of ethanoic acid and 0.110 mol of ethanol was maintained at 25°C until the following equilibrium had been established.

\[\text{CH}_3\text{COOH}(l) + \text{C}_2\text{H}_5\text{OH}(l) \rightleftharpoons \text{CH}_3\text{COOC}_2\text{H}_5(l) + \text{H}_2\text{O}(l) \]

The ethanoic acid present at equilibrium required 72.5 cm³ of a 1.50 mol·dm⁻³ solution of sodium hydroxide for complete reaction.

(i) Calculate the value of the equilibrium constant, \(K_c \), for this reaction at 25°C.

(ii) The enthalpy change for this reaction is quite small. By reference to the number and type of bonds broken and made, explain how this might have been predicted. (9 marks)

(b) Aspirin can be prepared by acylation using either ethanoyl chloride or ethanoic anhydride, as represented by the equations shown below.

\[\text{CH}_3\text{COCl} + \text{HOC}_6\text{H}_4\text{COOH} \rightarrow \text{CH}_3\text{COOC}_6\text{H}_4\text{COOH} + \text{HCl} \]

\[(\text{CH}_3\text{CO})_2\text{O} + \text{HOC}_6\text{H}_4\text{COOH} \rightarrow \text{CH}_3\text{COOC}_6\text{H}_4\text{COOH} + \text{CH}_3\text{COOH} \]

(i) By a consideration of the intermolecular forces involved, explain why the product HCl is a gas but the product CH₃COOH is a liquid at room temperature.

(ii) Give two industrial advantages of using ethanoic anhydride rather than ethanoyl chloride in the manufacture of aspirin. (4 marks)

9 You are required to plan an experiment to determine the percentage by mass of sulphate ions in some solid waste made up of the three compounds silicon dioxide, sodium carbonate and magnesium sulphate.

You are provided with dilute hydrochloric acid, a solution of barium chloride and simple laboratory equipment. (Hydrochloric acid reacts with carbonate ions and prevents the precipitation of barium and magnesium carbonates.)

(a) Outline how you would extract the sulphate ions from the solid waste and convert the extracted sulphate ions into a precipitate of barium sulphate. Write equations for the reactions which occur. (8 marks)

(b) Describe how you would separate pure barium sulphate from other reaction products and how you would determine its mass. Hence, explain how the percentage by mass of sulphate ions in the solid waste would be calculated. (7 marks)

END OF QUESTIONS
Question 8 Answers

(a) (i) Moles $\text{NaOH} = \frac{mv}{1000} = 1.50 \times \frac{72.5}{1000} = 0.108$ to 0.11

Moles of ethanoic acid at equilibrium = moles sodium hydroxide

Moles ester = moles water (= moles acid reacted)

$= 0.200 - 0.108 = 0.090$ to 0.092

Moles ethanol = $0.110 - 0.091 = 0.018$ to 0.020

$K_C = \frac{[\text{Ester}][\text{Water}][\text{Acid}][\text{Alcohol}]}{(\text{Allow if used correctly})}$

$= \frac{(0.091)^2}{0.109 \times 0.019} = 3.7$ to 4.9 (Ignore units)

NB Allow the answer 4 one mark as correct knowledge

(ii) Similar (types) of bond broken and made

Same number of the bonds broken and made (any number if equal)

NB If a list given then the total number of each type of bond broken and made must be the same

(b)(i) (Weak) dipole-dipole attraction between HCl molecules

(Strong) hydrogen bonds between CH$_3$COOH molecules

NB Ignore van der Waals forces

(b)(ii) Ethanoic anhydride is

cheap compared to ethanoyl chloride

less corrosive than ethanoyl chloride or HCl evolved

reaction less violent or vigorous or exothermic or dangerous or safer to use

less vulnerable to hydrolysis

reaction more easily controlled

NB Max 2
Question 9 Answers

(a) Weigh out a sample (Must be stated) (1)
Add hydrochloric nitric acid to the sample (1)
Until fizzing stops or excess acid added (1)
Filter off SiO₂ (Allow sand) (1)
Add barium chloride(solution) (1)
Until no more precipitation occurs or excess added (1)

\[\text{Na}_2\text{CO}_3 + 2\text{HCl} \rightarrow 2\text{NaCl} + \text{CO}_2 + \text{H}_2\text{O} \text{ (or ionic)} \] (1)

\[\text{MgSO}_4 + \text{BaCl}_2 \rightarrow \text{MgCl}_2 + \text{BaSO}_4 \text{ (or ionic)} \] (1)

NB Max 4 if H₂SO₄ added rather than HCl
i.e. Weigh sample (1), Filter SiO₂ (1) Two equations (2)

(b) Filter off the barium sulphate (1)
Wash to remove other reagents (1)
Dry (1)
Weigh (1)

Mole BaSO₄ = Mass BaSO₄/M_r BaSO₄ (or 233.4) (1)

Mass SO₄²⁻ = Mole BaSO₄ × M_r SO₄²⁻ (or 96.1) (1)

Percentage SO₄²⁻ = Mass SO₄²⁻ / Mass sample × 100 (1) 7