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1 Introduction

The numbers you're familiar with are either positive, negative, or zero. We call
these the real numbers. When you multiply a positive number by a positive
number, the resultant number is also positive. When you multiply a negative
number by a negative number, the resultant number is again positive. Anything
multiplied by zero is zero.

Consequently there is no real number, when squared, that gives a negative num-
ber. We can’t find a solution to the equation z = v/—1 if z is a real number.
Having a number that satisfies this equation would be useful, both as a purely
mathematical curiosity and in almost every field of applied maths. Fortunately
we do have such a number, it’s called an imaginary number.

The imaginary unit is defined by mathematicians to be the solution of x = /-1,
and is not a real number to avoid contradiction. We denote this solution by ¢,
such that i> = —1. An imaginary number is a multiple of the imaginary unit,
in the form bi where b is a real number. With imaginary numbers you can find
a square root to all negative numbers, as negative numbers are real multiples of
—1. For example:

V=36 =36 x v/—1 =6 x i = 6i.

Calling these solutions “imaginary” is just a naming convention and does not de-

tract its legitimacy, we could have called it anything. We defined negative num-

bers so solve equations such as x = 2—3 even though x in this case is not a posi-

tive number. How can you have “—1 apples”?! A similar thing with the existance
irrational numbers. Numbers are mathematical objects that follow axioms and

do have applications in the real world, but they don’t have to. Have a look at this

SMBC comic (http://www.smbc-comics. com/index.php?db=comics&id=2013#comic)
to better summarise my half-rant.

A complex number is a number in the form a+bi where a and b are real numbers
and ¢ is the imaginary unit. Complex numbers cannot be reduced to a single
term, the real and imaginary parts remain separate. Mathematicians tend to
abbreviate complex numbers by “z”, and use subscripts (such as z; or z2) when
multiple complex numbers are used. Real numbers and imaginary numbers are
both complex, as a real number is just a + 0¢ and an imaginary number 0 + bi.
When I want to talk about complex numbers in the form a + bz where both a
and b are not 0, I will refer to them as non-trivial complex numbers (an A-level
textbook or exam paper usually means this when they say “complex number”).
Here’s a Venn diagram to make these annoying distinctions less annoying:
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Figure 1: Venn diagram showing that all real and imaginary numbers are com-
plex. Note that 0 is the only number that’s both real and imaginary. The
numbers outside the Real and Imaginary circles are the non-trivial complex
numbers.

2 Operations of complex numbers

We can add, subtract, multiply and divide with complex numbers as well as real
numbers, but the rules need some clarification.

2.1 Addition and subtraction

To add two complex numbers together, you just add together the two real parts
and two imaginary parts, keeping them separate:

(a1 +b1i) + (ag + ba2i) = (a1 + az) + (b1 + ba)i
Similarly with subtraction:
(a1 + bll) — ((12 + bQZ) = (a1 — ag) + (bl — bg)l

This is boring, so let us move on.



2.2 Multiplication

Remember expanding brackets in the early years of secondary school?
“(z+a)(x+b) =22+ (a+b)x + ab” and all that stuff.

Complex numbers are similar as they involve two terms in brackets, and you
can’t mix real and imaginary numbers in the same way you can’t mix x and 2.
So here’s what happens when you multiply two together:

(a1 + bli)(ag + bzi) = ajas + ((lgbl + albg)i + by byi?

But I just went on about i2 = —1, so we can simplify this:

(a1 + b1i)(as + bai) = ajas + (agby + a1be)i + by byi?
= ayas + (azby + arba)i + biba(—1)
= aq1az2 + (agby + a1b2)i — biby
= (ajaz — b1ba) + (agbr + a1bs)i

And there’s our general formula for complex number multiplication. Note that
you always end up with another complex number, where in this case a is (ajaz —
b1ba) and b is (a2b; + a1bs). You never end up with anything funny because
all powers of ¢ simplify to either a real or imaginary number. Here’s a table to
illustrate the point:

TR S SR & AT AT A L S

1 4« -1 = 1 4 -1 = 1 4 -
Note the cycle of 1, ¢, —1, —i. This will repeat indefinitely.

2.3 Divison

We need to define another term before we get started: for a complex number
z = a + bi, its complex conjugate is a — bi, and is usually denoted by “z*”. For
example, if z = 3 + 2i, z* = 3 — 2i. Note that:

1. When you add a complex number with its complex conjugate, you always
end up with a real number as the imaginary parts cancel:

z+z"=a+bi+a—bi=2a

2. When you multiply a complex number by its complex conjugate, you al-
ways end up with a real number from the idea of the difference of two
squares:

22" = (a4 bi)(a — bi) = a® + abi — abi — b%*i* = a® + b*

3. The complex conjugate of a real number is itself, and of an imaginary
number its negative (obvious).

With that out of the way, here’s the trick to division, best explained first by a
worked example. Say we want to divide 8 + 97 by 1 + 2i. We could just write

849i _ _8 9 g .
Tra = T4o T 1390 but that isn’t in the form a-+bi where a and b are real, so we




need to do more fiddling with the fraction to get a real denominator and hence
in the form that’s acceptable. That’s where the complex conjugate is useful:

_ 8+49i
142
8+9i 1—2
p— 2
(1+2i)(1—2i) (2)
8 — 167 + 97 — 1842
U142 — 2 — 442

(8 + 94) + (1 + 2i)

24 -17q
= 4
- (@)

24 7.
=55 ®)

Now the explanation: (1) is just writing it as a fraction to make everything
neater. In (2) the fraction is being multiplied by the complex conjugate of the
denominator divided by itself (tongue twister), which is 1 (and multiplying by 1
does not change the value of the fraction). We multiply the two numerators and
two denominators together in (3). As the numerators are two different complex
numbers, we end up with another complex number for the new numerator in
(4), and as we’re multiplying the demoninator by its complex conjugate, we get
a real number for the new demoninator in (4) (as discussed in 2. above). As we
have a complex number divided by a real number, we can divide the real and
imaginary parts by this number separately. And voila, we have our answer in (5).

My explanation may be a little convuluted, but the general method is to mul-
tiply the fraction you’re trying to evaluate by the complex conjugate of the
denominator over itself, and this is analagous to rationalising surds, instead
this time we’re making the denominator real from complex instead of rational
from irrational.

3 Argand diagrams

You’re most likely aware of the idea of a number line introduced in primary
school:

-5 —4 -3 -2 -1 0 1 2 3 4 5

L L L L L ! L ! 1 1 1

Figure 2: A segment of a number line. We can’t draw the whole thing as the
whole line continues to oo in the positive direction and —oo in the negative
direction

Any real number can be shown as a point on this line, even awkward irrational
numbers like v/2 (somewhere between 1 and 2) and 7 (somewhere between 3
and 4) have their place, but we don’t have room for ¢ or any other non-trivial



complex number. Mathematicians get by this using a different diagram akin to
number lines that can represent any complex number.

An Argand diagram (also called a complezx plane) is a geometrical representa-
tion of complex numbers via a Cartesian coordinate system (as in the familiar
graphs with an z and y axis). In Argand diagrams the z-axis is the real axis
and acts no differently to a normal number line such as the one above. The
y-axis is the imaginary axis, and is a number line for the imaginary numbers
(except it’s vertical). As a complex number has a real part and an imaginary
part, it can be represented as a point on an Argand diagram in the same way a
real number is a point on a number line. For example:

S{z}
1 4i
136
A(3,2)
114
—4 -3 -2 —1 1 2 3 %z}
S To Figure 3: Point A represents 3424 and point
Tl B represents its complex conjugate, 3 — 2.
T2 B —2) Note that point B is a reflection of A with
1 _3i ' the real axis as the line of symmetry, this is
| the case for all complex conjugates (and is
pretty obvious if you think about it).

It’s more useful (and you’ll find out why) to represent these points instead as
vectors from the origin to that point, and I will do so from now on. One reason
is that adding complex numbers can be shown easily on an Argand diagram by
adding the vectors by the familiar triangle or parallelogram rule. For example,
let’s add 1 4 2¢ and 3 + ¢ together:

S{z}
+ 4i
R(4,3)
+ 3i 7
P,2.--"" "/
L 24 - /I
L, Q1)
. > 5 iz Figure 4: 1+2i and 3+ are represented
L f f f f by the vectors ﬁ and @, respectively.
4 (ﬁ + O@ = O? by the triangle rule,
T4 giving 4 4 37, the same answer when the
numbers are added normally.



3.1 Moduli and arguments

Another reason that makes displaying complex numbers as vectors desirable is
that it is easier to make sense of the idea of a modulus and an argument.

The modulus of a complex number is its “absolute value”. If a complex number
z = a + bi is shown as a vector O? on an Argand diagram then the modu-
lus is the length of oP (denoted “\O?r’). Working out the length of vector
O? is easy, let O? be the hypotenuse of a right handed triangle with the real
part (length a) and the imaginary part (length b) the corresponding sides. By
Pythagoras’ theorem we’ll have \O?| = va? + b2, so therefore the modulus of z,
denoted by |z|, is equal to v/a2 + b2. |z| is not Va2 + b2i2 = \/a? — b2 because
the length of that side is b, not bi (we're dealing with this geometrically and
something with an imaginary length doesn’t make sense).

The argument of a complex number is the angle between the positive real axis
and the vector representing the complex number. It can be measured in degrees,
but by now you should be familiar with radians as an alternative measure of
angles. The conversion is 180° = 7 radians (usually just 7). I will do the next
example in degrees to avoid another layer of possible confusion but then on I will
be using radian measure so learn to love them and make sure your calculator is
set to radians (too many people have mucked up exams from having the wrong
angle measure set in their calculators). For a complex number, z, we refer to
the argument as arg(z).

A visual example is probably needed to get things straight:

Figure 5: This is the Argand diagram
for z = —2 + 3i, represented as the
vector O—]\>4 . T've added the dashed
line and the right angle to make a
S{z} right-angled triangle out of it.
M(-2,3) Modulus;
I 2| = [OM]| = /(=2 + 3 = Vi3,
where |z| is the modulus, and we leave
+2i it in surd form.
Agument:
By our definition of an argument,
arg(z) is our grey-shaded «, though
we first work out [ with trigonome-
try and our right-angled triangle. 8 =
arctan% = 56.3°. From looking at
1 1 the diagram alone it’s obvious that
a+ B = 180°, so arg(z) = a =
180° — 56.3° = 123.7°.
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You get a gold star if you noticed my intentional sloppiness. I called the real
part “—2” when working out the modulus and “2” when working out the argu-
ment. So do signs matter? Yes and no...

For the modulus we are squaring the terms, so signs don’t matter as r? = (—x)?2
for a real number x. 2 may be more “accurate” than —2 as, in the same way
imaginary lengths of a triangle make no sense, neither do negative lengths. But
do as you please.

The argument is a different story. If T used —2 instead of 2 I would have got
arctanii2 = —56.3° instead of 56.3°. You get the same answer if you add
this from 180° instead of subtract it from 180°. My advice would be to use
whichever you want, and work out the agument through common sense (you
know « in this case is between 90° and 180° from looking at the diagram so
you would fiddle with the two numbers to get something between those two

values).

Just to clear something up with arguments. I measured o above anticlockwise
from the positive axis, but I didn’t have to. Let’s say we have a complex number
1

with argument v was 7 rad. If we measured clockwise we could have equally

said that v was ,%W rad. If we measured anticlockwise but went around the
whole way and back up again we would have got 2w + iﬂ = %7‘(. In general
terms our argument for v can be in the form 2nw + %77 where n is an integer. |
chose n = 0 for a because our convention for measuring arguments is that it lies
between —7 and 7, and we call this the principle argument. An alternative
convention would be to measure between 0 and 27w, but follow whatever your

course dictates.

3.2 The modulus-argument form

I've been going on about how complex numbers are represented in the form
z = a + bi with a and b real numbers, but we have another way of representing
the same complex number, called the modulus-argument form,

z = r(cosf + isinh)

where r = |z| which is the modulus and 6 the argument of z, and make sure not
to forget the 7. A simple example can show why it works:



N(3,4)

Figure 6: Here the complex
4 Rz} number 3+ 4i is represented by

1
B I

o) the vector 57\7 . The modulus,
ris V32+42 = /25 = 5 and
414 the argument arctan% = 0.93
rad (save exact values into your

calculator)

As the modulus, r is equal to the length of the hypotenuse (by definition),
you should be able to work out from the right-angled triangle by trigonometry
that the adjacent side (parallel to the real axis) is rsin# and the opposite side
(parallel to the imaginary axis) is r cosf and if we plug in the values for r and
0, we should get a and b as they are the lengths of the adjacent and opposite
sides, respectively:

. 3 4. .
5(c0s0.93 + isin 0.93) = 5(5 + gz) =3+4i
Success!

Just to finish off this section with a handy rule derived from the modulus-
argument form that should not be taken for granted (mathematicians have to
prove any new information, remember). Say we have two complex numbers z;
and zo with moduli |z1| = 71 and |z2| = r9 and arguments 6, and 05, respectively,
therefore:

|2122] = |21 22|

Proof: z; = r1(cosfyisinf;) and z5 = ro(cosfyisinfy) by modulus-argument
form, hence:
2122 = r1(cos B1isin61) X ra(cos Oai sin f3)
= r172(cos 01 cos Oy + i cos 7 sin Oz + i sin 01 cos 3 — sin 61 sin b)
= r172([cos 0 cos O3 — sin 0y sin 6] + i[cosby sin Os + sin 7 cos Os])
= r172(cos (01 + 02) + isin (61 + 63))
2172 is now itself in modulus-argument form and its modulus must be 7179, i.e.

|z122|. You probably don’t need to know the proof but it’s here to stay. The
fourth step comes from the third step by the use of trigonometric identities.



4 Complex numbers as solutions

For a quadratic equation axz? 4+ bx + ¢ = 0, where a, b and c are real constants,
you probably remember the following:

1. If b — 4ac > 0 then there are two (real) unique solutions to the equation
for z.

2. If b — 4ac = 0 then there is one (real) solution to the equation for x
(called a repeated root as the solution shows up twice on the graph for
the equation).

3. If > — dac < 0 then there are no (real) solutions to the equation for .

These rules can easily be derived by substituting these cases into the quadratic
formula, which to remind you is:

. —b+ Vb2 — dac
o 2a

Where (1.) gives us ¢ = =2 —dac V;f“lac and g = =b=ybi—dac V;j_‘l“c, (2.) gives us x = ;—(ﬁ’
and (3.) breaks down because we can’t get a real number from a negative square

root.

So this is where complex numbers come in. With case (3.), when we plug in «,
b and c, the g—f part is real (call it p to make it less messy) and the 7”’22;4“ is
a square root of something less than zero, and so imaginary (call it gi), and we
end up with two complex numbers because we still have the “+”bit between
them. So the solutions will be x = p 4+ ¢i and © = p — ¢gi, and what do you
notice about them? Theyre complex conjugates of each other! This leads to a
very important point:

If x = p+ ¢i is a complex solution (root) to a quadratic equation, the
other root of the equation will always be its complex conjugate,
P —qi.
Just to drive the point home, remember how when you factorise a quadratic
equation to the form (z — a)(z — ) =0, = @ and = = § are the solutions to
the equation? Okay, not let us multiply out the brackets:

(x—a)(z—p)=2%—(a+p)x+af

So in this quadratic equation we have b = —(a + ) and ¢ = af (a isn't
important right now). I mentioned at the start that b and ¢ are real constants,
so if our solutions « and B are complex we need these two complex solutions
to work in a way that makes the sum of them (b) and the product of them (c)
real. I mentioned at the start of Section 2 that two complex conjugates have
that exact property. I should mention now that no other non-trivial complex
numbers have that property. Therefore we have the imporant bold result above
(if you didn’t follow this paragraph then don’t fuss, as long as you understand
the conclusion).
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