Question Number	Scheme	Mark	s
1. (a)	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	B1 B1	(2)
(b)	For example: (i) $P-2=L-4$ c.s. $P=2-L-4$ (ii) $S-2=L-1a=A-3$ c.s. $S=2-L=1a-A=3$ giving $A-1$, $G-1$, $L-4$, $N-5$, $P-2$ A-3, $G-1$, $L-1$, $N-5$, $S-2$	M1 A1	(3)
(c)	Sam must do 2 and Nicola must do 5, leaving Philip without a task.	B2, 1, 0 (7 ma	(2) arks)

Question Number	Scheme	Marks	
2. (a)	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	M1 A1 A1 ft	
	Time = 37 minutes		(4)
(b)	Either $S - A - D - G - T$ or $S - B - E - G - T$	A1 ft	
	Not unique, e.g. gives other path	A1 ft	(2)
(c)	S-C-E-G-T 39 minutes	M1 A1	(2)
		(8 mar	ks)

Question Number		Scheme	Mar	Marks	
3.	(a)	Idea of travelling along each <i>arc</i> at least once and seeking to do so in a minimum total. <i>Practical</i> meaning of arcs/numbers.	B1	(1)	
	(<i>b</i>)	AB + DF = 32 + 9 = 41	M1 A1		
		AD + BF = 25 + 15 = 41			
		AF + BD = 18 + 24 = 42	A1		
		Repeat either $AE + EB$ and DF or AD and BF	A1 ft	(4)	
	(c)	Not unique, e.g. gives other solution	A1 ft		
	(<i>d</i>)	258 + 41 = 299	B1	(2)	
	(e)	DF is the shortest so start/finish at A/B	M1 A1	(2)	
			(9 m	arks)	

_	stion nber				Sc	heme					Ma	rks
4.	(a)	The list is not	in <i>alpi</i>	habetica	<i>l</i> order						B1	(1)
	(<i>b</i>)	Use of Bubble	e Sort o	or Quick	Sort						M1	
		For example:										
		B G N M Y L B G N M Y B C G N M B C E G N B C E G L B C E G L B C E G L	L C Y L M Y N M M N	E S P E P S E P S L P S Y P S P Y S P S	1st pas 2nd pas 3rd pas 4th pas 5th pas	G A B G B G B G B G B G B G B G B G B G			k sort C E S M Y S M S P M P S N P S	P 1st pass P 2nd pass Y 3rd pass Y 4th pass Y 5th pass	A1 A1 A1	(4)
	(a)	1 2	2	4	5					e changes		
	(c)	$\begin{bmatrix} 1 & 2 \\ B & C \end{bmatrix}$	3 <i>E</i>	4 <i>G</i>	5 <i>L</i>	6 <i>M</i>	7 N	8 <i>P</i>	9 S	10 <i>Y</i>		
		$\boxed{\frac{[10+1]}{2}=6}$		hester			half of l			1	M1 A1	
		$\frac{[7+10]}{2} = 9$	South	nampton	discar	d last l	nalf of l	ist and	pivot			
		$\frac{[7+8]}{2} = 8$	Plym	outh	discar	d last l	nalf of l	ist and	pivot		A1	
		Final term 7	Newc	eastle, th	erefore	word	found at	7			A1	(4)
											(9	marks)

Question Number	Scheme	Mark	s
5. (a)	x = 9, y = 16	B1 B1	(2)
(b)	Initial flow = 53 – either finds a flow-augmenting route or demonstrates not enough saturated arcs for a minimum cut	B1 B1	(2)
(c)	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	M1 A1	(2)
	e.g. <i>IDA</i> – 9	A1	
	<i>IFDA</i> – 24	A1	
	max flow – 64	B1	(3)
(d)	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	M1 A1	(2)
(e)	Max flow – min cut	M1	
	Finds a cut GC, AF, DF, DJ, EI, EH value 64	A1	(2)
	Note: must not use supersource or supersink arcs.		
		(13 ma	arks)

Question Number	Scheme	Marks
6. (a)	Maximise $P = 30x + 40y$ (or $P = 0.3x + 0.4y$)	B1
	subject to $x + y \ge 200$	B1
	$x + y \le 500$	B1
	$x \ge \frac{20}{100}(x+y) \implies 4x \ge y$	M1 A1
	$x \le \frac{40}{100}(x+y) \implies 3x \ge 2y$	A1 (6)
(b)		
	y = 4x	
	500 $2y = 3x$	D1.0
	400	B1 ft (x + y = 200, x + y = 500) B1 ft
	300 Feasible	(y = 4x)B1 ft
	200 region	(2y = 3x) B1 ft (shading)
	Profit line $x + y = 500$	B1 (labels)
	x + y = 200 100 200 300 400 500	
	(NB: Graph looks OK onscreen at 75% magnification but may print out	
	misaligned)	

Question Number	Scheme	Marks
6. (c)	Point testing or profit line	A1
(cont.)	Intersection of $y = 4x$ and $x + y = 500$	A1
	(100, 400) Profit = £190 (units must be clear)	A1 (3)
		(11 marks)

Question Number	Scheme	Marks
7. (a)	E.g. It shows dependence but is not an activity; G depends on A and C only but H and I depend on A , C and D .	B1 (1)
(b)	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	M1 A1
(c)	$B \xrightarrow{C-I} J-L \text{so } B, C, E, F, I, J, L$	A1 (5)
(d)	A: $11 - 0 - 9 = 2$ D: $11 - 3 - 7 = 1$ G: $18 - 11 - 5 = 2 *$ H: $17 - 11 - 5 = 1$ K: $25 - 16 - 7 = 2 *$	M1 A1 (non *) A1 (*) (3)
(e)	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	M1 A1 A1 A1 (4)
(f)	Gantt chart at time 8 C , F , A and D , must be happening \therefore 4 workers needed	M1 A1 (2) (15 marks)