GCE Examinations

Advanced Subsidiary / Advanced Level

Decision Mathematics

Module D1

Paper C

MARKING GUIDE

This guide is intended to be as helpful as possible to teachers by providing concise solutions and indicating how marks should be awarded. There are obviously alternative methods that would also gain full marks.

Method marks (M) are awarded for knowing and using a method.
Accuracy marks (A) can only be awarded when a correct method has been used.
(B) marks are independent of method marks.

Written by Shaun Armstrong \& Dave Hayes
© Solomon Press

D1 Paper C - Marking Guide

1. (a)

(b) e.g. $A B C D E A$ is a Hamiltonian cycle choose $A C$ inside so $B D$ and $B C$ must go outside put $A D$ or $C E$ inside, then the other cannot be placed without overlapping so no planar drawing is possible
(c)

e.g. $A E B F C D A$ is a Hamiltonian cycle, redraw as polygon:

choose $A D$ inside so $B F$ and $C E$ must go outside but this creates a crossing outside so no planar drawing is possible
2. e.g.

3. (a)

150	104	20060	184	84	120	(pivot in box)
150	104	200184	84	120	60	
L_{1}						
$\underbrace{200}$	184	$\underbrace{150 \quad 104}$	84	120	60	
L_{2}	L_{3}					
200	184	$\underbrace{150 \quad 104}$	120	84	60	
		L_{4}				
200	184	$\underbrace{150 \quad 120}$	104	84	60	
L_{5}						
200	184	$\underbrace{150} 120$	104	84	60	
		L_{6}				now complete

M2 A2
(b) sort list in decreasing order and have bins of size 240
take each length in turn and put it in the first bin in which it can fit count number of bins used

$\therefore 5$ bins needed
(c) unused rod $=(5 \times 240)-(200+184+150+120+104+84+60)$

$$
=298 \therefore \text { not possible }
$$

B1 (9)

label H - label $Y=37=$ weight $Y H$
label Y - label $L e=23=$ weight $L e Y$
label $L e$ - label $M a=40=$ weight MaLe
label $M a$ - label $L i=35=$ weight $L i M a \quad$ M1 A1
so Li Ma Le Y H is shortest route, length $=135$ miles
A2
(10)
5. (a) arcs in ascending order by inspection:
$20,25,25,35,38,42,50,52,55,68,75,85,85,93,100,105,108,175$

order: $\mathrm{E}-\mathrm{Gr}, \mathrm{Gr}-\mathrm{F}, \leftrightarrow \mathrm{I}-\mathrm{Ge}, \mathrm{Gr}-\mathrm{C}, \mathrm{Gr}-\mathrm{I}, \mathrm{Gr}-\mathrm{R}, \mathrm{C}-\mathrm{U}$;
M2 A1
cost $£ 263$
(b) (i) $25,50,55,68,75,85,85,93,100,105,108,175$

$$
\mathrm{I}-\mathrm{Ge}, \mathrm{I}-\mathrm{F}, \mathrm{C}-\mathrm{U}, \mathrm{C}-\mathrm{E}, \mathrm{~F}-\mathrm{R}(\text { or } \mathrm{Ge}-\mathrm{R}), \mathrm{Ge}-\mathrm{E} \text {; cost } £ 396
$$

(ii) previous tree still minimum, cost $=£ 263$
(c) e.g. translations between other languages cheaper via Greek even though Greek translation not required
(d) an asymmetric array could show both costs
(e) Prim's B1
(f) e.g. that a translation via another language will be of as good quality as one done directly - unlikely to be the case

B2
6. (a)

(b) initial matching shown by $工$
search for alternating path giving e.g. $G-S$ (breakthrough)
change status giving $G=S$
alternating path e.g. $E-A=H-O=F-D=I-C$ (breakthrough)
change status giving $E=A-H=O-F=D-I=C$
complete matching e.g. $E-A, F-D, G-S, H-O, I-C$
(c) e.g. there is now a cycle: $H-C=I-D=F-O=H$
change status giving $H=C-I=D-F=O-H$
alternative matching $E-A, F-O, G-S, H-C, I-D$
M2 A1
7. (a) $6 x+15 y+12 z \leq 185$
$3 x+3 y+z \leq 30$
$x+4 y+4 z \leq 60$
(b) there are 3 independent variables
(c) rewriting with slack variables gives
$6 x+15 y+12 z+r=185$
$3 x+3 y+z+s=30$
$x+4 y+4 z+t=60$
need to maximise $I=40 x+90 y+60 z$, considering 10's of pounds gives
objective function $P-4 x-9 y-6 z=0$, hence given tableau
(d) θ values are $12 \frac{1}{3}, 10$ and 15 so pivot row is $2^{\text {nd }}$ row

Basic Var.	x	y	z	r	s	t	Value
r	-9	0	7	1	-5	0	35
y	1	1	$\frac{1}{3}$	0	$\frac{1}{3}$	0	10
t	-3	0	$\frac{8}{3}$	0	$-\frac{4}{3}$	1	20
P	5	0	-3	0	3	0	90

increase z next, θ values are 5,30 and $7 \frac{1}{2}$ so pivot row is 1 st row

Basic Var.	x	y	z	r	s	t	Value
z	$-\frac{9}{7}$	0	1	$\frac{1}{7}$	$-\frac{5}{7}$	0	5
y	$\frac{10}{7}$	1	0	$-\frac{1}{21}$	$\frac{4}{7}$	0	$8 \frac{1}{3}$
t	$\frac{3}{7}$	0	0	$-\frac{8}{21}$	$\frac{4}{7}$	1	$6 \frac{2}{3}$
P	$\frac{8}{7}$	0	0	$\frac{3}{7}$	$\frac{6}{7}$	0	105

optimal solution as all values on the objective row are ≥ 0
(e) 0 of $X, 8 \frac{1}{3}$ of Y and 5 of Z, giving $P=105$ so profit $=£ 1050$
(f) try integer coordinates around the optimal solution
e.g. $(0,8,5)(1,8,5)(0,9,5)$ etc. checking feasible and seeking optimum B2

Performance Record - D1 Paper C

Question no.	1	2	3	4	5	6	7	Total
Topic(s)	$\begin{aligned} & \hline \begin{array}{l} \text { graphs, } \\ \text { planarity } \end{array} \end{aligned}$	activity network	$\begin{aligned} & \hline \text { quick sort, } \\ & \text { bin } \\ & \text { packing } \end{aligned}$	Dijkstra's	Kruskal's	matching	simplex	
Marks	6	7	9	10	12	13	18	75
Student								

