GCE Examinations Advanced Subsidiary / Advanced Level

Decision Mathematics Module D1

Paper D

MARKING GUIDE

This guide is intended to be as helpful as possible to teachers by providing concise solutions and indicating how marks should be awarded. There are obviously alternative methods that would also gain full marks.

Method marks (M) are awarded for knowing and using a method.

Accuracy marks (A) can only be awarded when a correct method has been used.

(B) marks are independent of method marks.

Written by Shaun Armstrong & Dave Hayes
© Solomon Press

These sheets may be copied for use solely by the purchaser's institute.

D1 Paper D - Marking Guide

1. (a) order: 4 3 5

	Durness	Helmsdale	Inverness	Thurso	Wick
Durness		68	123	81	92
Helmsdale	68		102	72	(64)
Inverness	123	102		148	127
Thurso	81	72	148		48
Wiek	92	64	127	48	<u></u>

(b) 282 km A1 (6)

2. (a) e.g. choose middle name, latter if middle pair interrogate, giving answer or list of about half the previous list repeat until celebrity found

В4

M3 A2

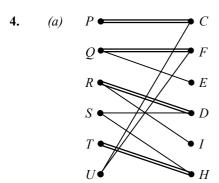
(b) with list of 1 name, need 1 interrogation with list of 2 names, need a maximum of 2 interrogations with list of 4 names, need a maximum of 3 interrogations etc. with list of 2^n names, need a maximum of (n + 1) interrogations $2^{20} = 1048576$ so with 1 million need a maximum of 21 interrogations. (accept 20)

M2 A1

(7)

3. (a) if y = 0, lowest weight = 22 (SADT) if y large, lowest weight = 27 (SBDT) \therefore lowest weight between 22 and 27 inclusive

M2 A1


(b) if y = 0, minimum cut = 14, $\{S, A, B, C, E\} \mid \{D, T\}$ if y large, minimum cut = 22, $\{S, A, B, C, D, E\} \mid \{T\}$ maximum flow = minimum cut \therefore between 14 and 22 inclusive

M2 A1

(c) (i) e.g. shortest route by road between 2 towns (ii) e.g. maximum traffic flow between 2 towns

B1

B1 **(8)**

A1

(b) initial matching shown by ———

B1

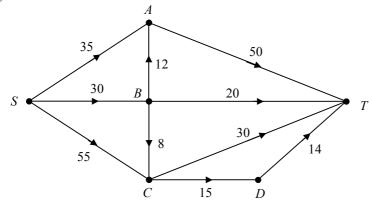
- (c) search for alternating path giving e.g. S D = R I (breakthrough) M1 A1 change status giving S = D R = I M1 search for alternating path giving e.g. U F = Q E (breakthrough) M1 A1 change status giving U = F Q = E M1 complete matching e.g. P C, Q E, R I, S D, T H, U F A1
- (d) P and U both now only interested in C which only one can have
- B2 (11)
- 6. (a) e.g. locate all odd vertices and identify all ways of pairing these for each way find total of minimum times between pairs choose lowest total minimum time is total of all arcs + lowest total found above

В3

(b) odd vertices are A, B, C and Dminimum AB and CD = 20 + 80 = 100AC and BD = 40 + 60 = 100 B1

AD and BC = 40 + 20 = 60; lowest is 60 total = sum of all arcs + 60 = 1460 + 60 = 1520 seconds route: e.g. FGHIJKLDEAGIBCDEABCJLF

M1 A1 A1


A1

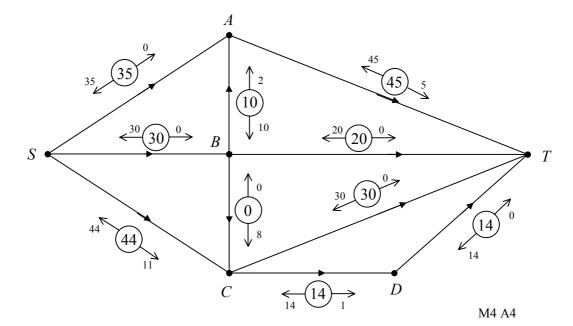
(c) odd vertices now C and D, minimum CD = 200new total = 1440 + 200 = 1640 seconds removal of arc has increased total time as it provided a useful link

M1 A1 B1

(11)

6. (a)

M2 A1


(b)
$$50 + 20 + 30 + 15 = 115$$

A1

(c) minimum cut =
$$\{S, C, D\} \mid \{A, B, T\} = 109$$

M1 A1

e.g. start with SAT = 35, SBT = 20, SCT = 30(d) augment SBAT by 10 and SCDT by 14 giving maximum flow below

this is maximum flow as it is equal to the minimum cut (e)

В1

e.g. maximum traffic flow between 2 points on a one-way system (f)

B1 (16)

7. (a) maximise
$$R = 4x + 10y + 2z$$
 given

$$x-y \le 5$$

$$-y+2z \le 0$$

$$2x+4y+z \le 40$$

$$x \ge 0, y \ge 0, z \ge 0$$

M2 A2

(b) to change inequalities into equations

В1

(c) only one positive value so pivot row is 3rd row

2nd tableau is:

Basic Var.	х	у	Z	r	S	t	Value
r	$\frac{3}{2}$	0	$\frac{1}{4}$	1	0	$\frac{1}{4}$	15
S	$\frac{1}{2}$	0	$\frac{9}{4}$	0	1	$\frac{1}{4}$	10
У	$\frac{1}{2}$	1	$\frac{1}{4}$	0	0	$\frac{1}{4}$	10
R	1	0	1/2	0	0	<u>5</u> 2	100

M3 A3

(d) final tableau as all values on the objective row are ≥ 0

B1

(e) centre provides 10 courses for adults (not pensioners) and gets £100 revenue per day

B2

(f) no. e.g. the slack variable s associated with this constraint is not zero so optimal solution without this constraint would be the same

B2 (16)

Total (75)

Performance Record – D1 Paper D

Question no.	1	2	3	4	5	6	7	Total
Topic(s)	Prim's	binary- search	weighted network, flows	matching	route inspection	flows	simplex	
Marks	6	7	8	11	11	16	16	75
Student								