GCE Examinations

Advanced Subsidiary / Advanced Level

Decision Mathematics

Module D1

Paper E

MARKING GUIDE

This guide is intended to be as helpful as possible to teachers by providing concise solutions and indicating how marks should be awarded. There are obviously alternative methods that would also gain full marks.

Method marks (M) are awarded for knowing and using a method.
Accuracy marks (A) can only be awarded when a correct method has been used.
(B) marks are independent of method marks.

Written by Shaun Armstrong \& Dave Hayes
© Solomon Press

D1 Paper E - Marking Guide

1. (a) Graph 1 e

Graph 2 e.g.

(b) $\quad K_{4}$ as each vertex is joined by exactly one arc to each other vertex and no vertex is joined to itself.
(c) yes, can add any of $A D, B E$ or $C F$ - all vertices remain connected, still at most 1 arc between each pair of vertices, and no loops
2.
(a)

M2 A2
(ii) Kendal, Arlington and Elford, value $£ 220000$

M1 A1
(b) more than 2 branches at each node,
consider $\mathrm{K}, \mathrm{M}, \mathrm{A}, \mathrm{E}, \mathrm{G}$ each time until terminated
B1
(7)
3.
(a)

B1
(b)
(i)

(ii)

B1
(c) 2 or 4

A1
must be an even number of odd nodes $\therefore x$ can't be odd also, to be simple, $x \leq 4$

B1
(d)
 $x=4:$

B2

(7)

4. (a) $x_{1}+x_{2}+x_{3}+x_{4}=200+350+250+200$
$\therefore x_{4}=1000-x_{1}-x_{2}-x_{3}$
(b) $C=1000 x_{1}+1800 x_{2}+1600 x_{3}+1900 x_{4}+500\left(x_{1}-200\right)$

$$
+500\left(x_{1}+x_{2}-550\right)+500\left(x_{1}+x_{2}+x_{3}-800\right)
$$

sub in for x_{4} giving $600 x_{1}+900 x_{2}+200 x_{3}+1125000$
(c) $P=(1000 \times 4000)-C=2875000-600 x_{1}-900 x_{2}-200 x_{3}$
(d) 2 of $x_{1}+x_{2} \geq 550$

$$
x_{1}+x_{2}+x_{3} \geq 800
$$

$$
x_{1}+x_{2}+x_{3} \leq 1000
$$

(e) there are 3 independent variables
(f) $x_{1}=x_{2}=x_{3}=0$ is not in the feasible region B1 need to start with feasible solution e.g. $x_{1}=200, x_{2}=350$ and $x_{3}=250 \quad$ B1

label F - label $I=10=$ weight $I F$
label $I-$ label $M=25=$ weight $M I$
label $M-$ label $N=40=$ weight $N M$
label M - label $O=40=$ weight $O M$
label $N-$ label $P=30=$ weight $P N$
label O - label $P=30=$ weight $P O$
so $P N M I F$ (or $P O M I F$) is a route of minimum length (105 miles)
M1 A1
A1
(b) odd vertices are P and F
minimum $P F=105$
total $=$ sum of all arcs $+105=1815+105=1920$ metres

B1
A1
M1 A1
6.
(a) $1+8+8+15=32$

M1 A1
(b) (i) e.g. augment $S A B G F J T$ by 4 giving:

(c) max flow as $=$ min cut of $21\{S, A, B, C, D, F, G, J\} \mid\{E, H, I, T\}$

M1 A1
(d) new min cut $=24\{S, A\} \mid\{B, C, D, E, F, G, H, I, J, T\}$
\therefore max flow could increase by 3
M1 A1
(e) $A E$ (as both $1^{\text {st }}$ and $2^{\text {nd }} m$ in cut pass through it)

A1
new min cut $=26$ so new max flow $=26$
A1
7. (a) e.g.

M2 A2
(b) labelling above, critical path is $B C F$, minimum duration $=59$ minutes M1 A2
(c) float time of $A=22-0-18=4$ minutes
$D=31-18-9=4$ minutes $E=59-27-28=4$ minutes

(d) e.g.

M1 A2
(e) new critical path is $B_{1} A D E$, minimum duration $=65$ minutes

M1 A2
Performance Record - D1 Paper E
$\left.\begin{array}{|c|c|c|c|c|c|c|c|c|}\hline \text { Question no. } & \mathbf{1} & \mathbf{2} & \mathbf{3} & \mathbf{4} & \mathbf{5} & \mathbf{6} & \mathbf{7} & \text { Total } \\ \hline \text { Topic(s) } & \begin{array}{l}\text { graphs, } \\ \text { planarity }\end{array} & \begin{array}{l}\text { tree } \\ \text { diagram }\end{array} & \begin{array}{l}\text { graphs } \\ \text { Marks }\end{array} & 6 & 7 & \begin{array}{l}\text { linear } \\ \text { program'g. }\end{array} & \begin{array}{l}\text { Dijkstra's, } \\ \text { route } \\ \text { inspection }\end{array} & \begin{array}{l}\text { flows } \\ \\ \hline\end{array} \\ \hline \text { activity } \\ \text { network, } \\ \text { critical } \\ \text { path }\end{array}\right)$

