Further Pure Mathematics FP1 (6667)

Practice paper A mark scheme

Question number	Scheme	Marks
1. (a) (b)	$\begin{aligned} & \mathbf{A} \mathbf{B}=\left(\begin{array}{cc} 2 & -1 \\ 4 & 3 \end{array}\right)\left(\begin{array}{cc} 3 & 1 \\ -4 & 2 \end{array}\right)=\left(\begin{array}{cc} 10 & 0 \\ 0 & 10 \end{array}\right) \\ &=10 \mathbf{I}, \quad c=10 \\ & \mathbf{A}^{-1}=\frac{1}{10}\left(\begin{array}{cc} 3 & 1 \\ -4 & 2 \end{array}\right) \end{aligned}$	M1 A1 (2) M1 A1 (2) (4 marks)
2.	$\begin{aligned} & \mathrm{f}(2)=1 \frac{1}{9} \quad \mathrm{f}(3)=-\frac{26}{27} \\ & \mathrm{f}(2.5)=0.06415 \ldots \quad \Rightarrow 2.5<\alpha<3 \\ & \mathrm{f}(2.75)=-0.45125 \ldots \quad \Rightarrow 2.5<\alpha<2.75 \end{aligned}$	B1 M1 A1 A1 (4 marks)
3. (a) (b)	$\begin{aligned} & \mathrm{f}(k+1)=(2 k+3) 7^{k+1}-1 \\ & \mathrm{f}(k+1)-\mathrm{f}(k)=(2 k+3) 7^{k+1}-1-\left[(2 k+1) 7^{k}-1\right] \\ &=(12 k+20) 7^{k} \quad a=12, b=20 \end{aligned}$ $\mathrm{f}(1)=3 \times 7-1=20$; divisible by 4 $\mathrm{f}(k+1)-\mathrm{f}(k)=4(3 k+5) 7^{k}$ \therefore true for $n=k+1$ if true for $n=k$ Conclusion, with no wrong working seen.	B1 M1 A1 (3) B1 M1 A1 A1 (4) (7 marks)
4. (a) (b)	$\begin{aligned} & \mathrm{f}^{\prime}(x)=3 x^{2}+1 \\ & \mathrm{f}(1.2)=-0.072 \quad \mathrm{f}^{\prime}(x)=5.32 \\ & \begin{array}{l} \alpha=1.2-\frac{-0.072}{5.32}=1.21353 \ldots=1.21(3 \mathrm{sf}) \\ \\ \Rightarrow \alpha=1.21(3 \mathrm{sig} \mathrm{figs}) \end{array} \end{aligned}$	$\begin{array}{r} \text { M1 A1 (2) } \\ \text { B1 } \\ \text { M1 A1 } \\ \text { A1 cso (4) } \\ \text { (6 marks) } \end{array}$

Question number	Scheme	Marks
5. (a) (b)	Second root $=3-\mathrm{i}$ Product of roots $=(3+i)(3-i)=10$ or quadratic factor is $x^{2}-6 x+10$ Complete method for third root or linear factor Third root $=\frac{1}{2}$ Use candidate's 3 roots to find cubic with real coefficients $\left(x^{2}-6 x+10\right)(2 x-1)=2 x^{3}-13 x+26 x-10$ Equating coefficients $a=-13, b=26$	B1 M1 A1 M1 A1 (5) M1 M1 A1 (3) (8 marks)
6. (a) (b) (c) (d)	$\begin{aligned} & \left(\begin{array}{ll} k & 0 \\ 0 & k \end{array}\right) \\ & \left(\begin{array}{cc} 0 & 1 \\ -1 & 0 \end{array}\right) \\ & \left(\begin{array}{ll} 3 & 0 \\ 0 & 3 \end{array}\right)\left(\begin{array}{cc} 0 & 1 \\ -1 & 0 \end{array}\right)=\left(\begin{array}{cc} 0 & 3 \\ -3 & 0 \end{array}\right) \\ & \left(\begin{array}{cc} 0 & 3 \\ -3 & 0 \end{array}\right)\binom{a+2}{b}=\binom{3 b}{-3 a-6} \\ & 3 b=5 a+2,-3 a-6=2-b \end{aligned}$ Eliminate a or b $a=-5.5, b=-8.5$	B1 (1) M1 A1 (2) M1 A1 (2) M1 M1 M1 A1 A1 (5) (10 marks)
7. (a) (b)		$\begin{array}{r} \mathrm{M} 1 \\ \mathrm{~A} 1, \mathrm{~A} 1 \text { (3) } \\ \mathrm{M} 1 \\ \text { A1 (2) } \end{array}$

Question number	Scheme	Marks
(c) (d) (e)	$\|w\|=\sqrt{32} \quad(=4 \sqrt{2})$ ft in quadrant other than first $\|A B\|^{2}=4+32-16 \sqrt{2} \cos 45^{\circ}(=20)$, then square root $\mathrm{AB}=2 \sqrt{5}$	M1 A1 (2) B1 B1 (2) M1 A1 (2)
(e)	Alternative: $\quad w-z=1-2 \sqrt{3}+(2+\sqrt{3}) \mathrm{i}$ $\begin{aligned} \therefore A B=\|w-z\| & =\sqrt{(1-2 \sqrt{3})^{2}+(2+\sqrt{3})^{2}} \\ & =\sqrt{20}=2 \sqrt{5} \end{aligned}$	$\begin{array}{r} \text { M1 } \\ \text { A1 (2) } \\ \text { (11 marks) } \end{array}$
8. (a) (b) (c)	$\begin{align*} & a=3 \\ & y=2 a^{\frac{1}{2}} x^{\frac{1}{2}} \quad \Rightarrow \quad \frac{\mathrm{~d} y}{\mathrm{~d} x}=a^{\frac{1}{2}} x^{-\frac{1}{2}} \\ & y=\text { and attempt } \frac{\mathrm{d} y}{\mathrm{~d} x} \\ & \frac{\mathrm{~d} y}{\mathrm{~d} x}=\frac{1}{t} \quad \operatorname{sub} x=3 t^{2} \\ & \text { Tangent is } \quad y-6 t=\frac{1}{t}\left(x-3 t^{2}\right) \\ & t y=x+3 t^{2} \tag{*} \end{align*}$ Equation of tangent at Q is $q y=x+3 q^{2}$ $\text { At } R, y=0 \quad 0=x+3 q^{2} .$	B1 (1) M1 M1 M1 A1 cso (4) B1 M1 A1 (3)

Question number	Scheme	Marks
(d)	Equation of directrix is $x=-3$ $\begin{aligned} & R D=3 q^{2}-3 \\ & 3 q^{2}-3=12 \quad \Rightarrow \quad q^{2}=5 \\ & q=\sqrt{5} \end{aligned}$	B1 M1 M1 A1 (4) (12 marks)
9. (a)	If $n=1, \sum_{r=1}^{n} r^{2}=1, \quad \frac{1}{6} n(n+1)(2 n+1)=\frac{1}{6} \times 1 \times 2 \times 3=1$ \therefore true for $n=1$ $\begin{aligned} \sum_{r=1}^{k+1} r^{2} & =\frac{1}{6} k(k+1)(2 k+1)+(k+1)^{2} \\ & =\frac{1}{6}(k+1)[k(2 k+1)+6(k+1)] \\ & =\frac{1}{6}(k+1)\left(2 k^{2}+7 k+6\right) \\ & =\frac{1}{6}(k+1)(k+2)(2 k+3) \\ & =\frac{1}{6}(k+1)([k+1]+1)(2[k+1]+1) \end{aligned}$ \therefore true for $n=k+1$ if true for $n=k$, \therefore true for $n \in \mathbb{Z}^{+}$by induction Expand brackets and attempt to use appropriate formulae. $\begin{align*} \sum_{r=1}^{n}\left(r^{2}+6 r+5\right) & =\frac{1}{6} n(n+1)(2 n+1)+6 \times \frac{1}{2} n(n+1)+5 n \\ & =\frac{n}{6}\left[2 n^{2}+3 n+1+18 n+18+30\right] \\ & =\frac{n}{6}\left[2 n^{2}+21 n+49\right] \\ & =\frac{n}{6}(n+7)(2 n+7) \quad \text { (*) } \tag{*} \end{align*}$ Use $S(40)-S(9)=\frac{40}{6} \times 47 \times 87-\frac{9}{6} \times 16 \times 25,=26660$	M1 A1 M1 A1 A1 cso (6) M1 M1 A1 A1 A1 A1 cso (5) M1, A1 (2) (13 marks)

