GCE
Edexcel GCE
Mathematics
Further Pure Mathematics (FP1/ 6674)

J une 2008
advancing learning, changing lives
Mark Scheme (Final)

Edexcel GCe
Mathematics

General Marking Guidance

- All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.
- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
- There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.
- All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme. Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.
- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- When examiners are in doubt regarding the application of the mark scheme to a candidate's response, the team leader must be consulted.
- Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.

EDEXCEL
 J une 2008 Further Pure FP1 Mark Scheme

\begin{tabular}{|c|c|c|c|}
\hline Question number \& Scheme \& \multicolumn{2}{|l|}{Marks} \\
\hline 1. \& \begin{tabular}{l}
(a) 4 \\
(b) \((x-4)\left(x^{2}+4 x+16\right)\) \\
\(x=\frac{-4 \pm \sqrt{16-64}}{2}, \quad x=-2 \pm 2 \sqrt{3} \mathrm{i} \quad\) (or equiv. surd for \(2 \sqrt{ } 3\))
\end{tabular} \& \begin{tabular}{l}
B1 \\
M1 A1 \\
M1, A1 \\
B1 \\
B1ft
\end{tabular} \& (1)
(4)

(2)
7

\hline \& | M1 in part (b) needs(x-"their 4") times quadratic $\left(x^{2}+a x+..\right)$ or times $\left(x^{2}+16\right)$ |
| :--- |
| M1 needs solution of three term quadratic |
| So $\left(x^{2}+16\right)$ special case, results in B1M1A0M0A0B0B1 possibly |
| Alternative scheme for (b) |
| $(a+i b)^{3}=64$, so $a^{3}+3 a^{2} i b+3 a(i b)^{2}+(i b)^{3}=64$ and equate real, imaginary parts |
| so $a^{3}-3 a b^{2}=64$ and $3 a^{2} b-b^{3}=0$ |
| Solve to obtain $a=-2, b=\sqrt{12}$ |
| Alternative ii |
| $(x-4)(x-a-i b)(x-a+i b)=0 \quad$ expand and compare coefficients |
| two of the equations $-2 a-4=0,8 a+a^{2}+b^{2}=0,4\left(a^{2}+b^{2}\right)=64$ |
| Solve to obtain $a=-2, b=\sqrt{12}$ |
| (c)Allow vectors, line segments or points in Argand diagram. |
| Extra points plotted in part (c) - lose last B mark |
| Part (c) answers are independent of part (b) | \& \[

$$
\begin{gathered}
\text { M1 } \\
\text { A1 } \\
\text { M1A1 } \\
\text { M1 } \\
\text { A1 } \\
\text { M1A1 }
\end{gathered}
$$
\] \&

\hline
\end{tabular}

EDEXCEL

J une 2008
 Further Pure FP1
 Mark Scheme

EDEXCEL

J une 2008

Further Pure FP1

Mark Scheme

EDEXCEL

J une 2008
Further Pure FP1

Mark Scheme

Question number	Scheme	Marks
4.	(a) $m^{2}+4 m+3=0 \quad m=-1, m=-3$ C.F. $(x=) A \mathrm{e}^{-t}+B \mathrm{e}^{-3 t} \quad$ must be function of t, not x $\begin{aligned} & \text { P.I. } x=p t+q \quad\left(\begin{array}{ll} \text { or } & \left.x=a t^{2}+b t+c\right) \\ 4 p+3(p t+q)=k t+5 & 3 p=k \quad \\ \\ 4 p+3 q=5 \end{array} \quad \text { (Form at least one eqn. in } p \text { and/or } q\right. \text {) } \\ & p=\frac{k}{3}, \quad q=\frac{5}{3}-\frac{4 k}{9}\left(=\frac{15-4 k}{9}\right) \end{aligned}$ General solution: $x=A \mathrm{e}^{-t}+B \mathrm{e}^{-3 t}+\frac{k t}{3}+\frac{15-4 k}{9}$ must include $\mathrm{x}=$ and be function of t (b) When $k=6, \quad x=2 t-1$	M1 A1 A1 B1 M1 A1 A1 ft (7) M1 A1cao (2) 9
	(a) M1 for auxiliary equation substantially correct B1 not awarded for $x=k t+$ constant (b) M mark for using $k=6$ to derive a linear expression in t. (cf must have involved negative exponentials only) so e.g. $y=2 t-1$ is M1 A0	

EDEXCEL
J une 2008
Further Pure FP1

Mark Scheme

EDEXCEL

J une 2008

Further Pure FP1
Mark Scheme

Question number	Scheme	Marks
6.	(a) $\frac{2}{(r+1)(r+3)}=\frac{1}{r+1}-\frac{1}{r+3} \quad \mathrm{M}: \frac{2}{(r+1)(r+3)}=\frac{A}{r+1}+\frac{B}{r+3}$	M1 A1 (2)
	(b) $r=1: \quad\left(\frac{2}{2 \times 4}\right)=\frac{1}{2}-\frac{1}{4}$	M1
	$\begin{aligned} r & =2: \quad\left(\frac{2}{3 \times 5}\right)=\frac{1}{3}-\frac{1}{5} \\ \ldots r & =n-1: \quad\left(\frac{2}{n(n+2)}\right)=\frac{1}{n}-\frac{1}{n+2} \end{aligned}$	
	$r=n: \quad\left(\frac{2}{(n+1)(n+3)}\right)=\frac{1}{n+1}-\frac{1}{n+3}$	A1 ft
	Summing: $\sum=\frac{1}{2}+\frac{1}{3}-\frac{1}{n+2}-\frac{1}{n+3}$	M1 A1
	$=\frac{5(n+2)(n+3)-6(n+3)-6(n+2)}{6(n+2)(n+3)}=\frac{n(5 n+13)}{6(n+2)(n+3)}$	d M1 A1cso (6)
	(c) $\sum_{21}^{30}=\sum_{1}^{30}-\sum_{1}^{20}=\frac{30 \times 163}{6 \times 32 \times 33}-\frac{20 \times 113}{6 \times 22 \times 23}, \quad=0.02738$	M1A1ft,A1cso (3)
		(11)
	(b) The first M1 requires list of first two and last two terms	
	The A1 must be correct but ft on their A and B	
	The second M1 requires terms to be eliminated and A1 is cao	
	(c) The M mark is also allowed for $\sum_{1}^{30}-\sum_{1}^{21}$ applied with numbers included	
	Using $u_{30}-U_{20}$ scores M0 A0 A0	
	The first A 1 is ft their A and B or could include A and B, but final $A 1$ is cao but	
	accept 0.027379775599 to 5 or more decimal places..	

EDEXCEL
 J une 2008
 Further Pure FP1
 Mark Scheme

Question number	Scheme	Marks
7.	(a) $\begin{align*} & \frac{\mathrm{d} y}{\mathrm{~d} x}=v+x \frac{\mathrm{~d} v}{\mathrm{~d} x} \\ & \left(v+x \frac{\mathrm{~d} v}{\mathrm{~d} x}\right)=\frac{x}{v x}+\frac{3 v x}{x} \Rightarrow x \frac{\mathrm{~d} v}{\mathrm{~d} x}=2 v+\frac{1}{v} \tag{*} \end{align*}$ (b) $\begin{aligned} & \int \frac{v}{1+2 v^{2}} \mathrm{~d} v=\int \frac{1}{X} \mathrm{~d} x \\ & \frac{1}{4} \ln \left(1+2 v^{2}\right), \quad=\ln x(+C) \\ & A x^{4}=1+2 v^{2} \end{aligned}$ $A x^{4}=1+2\left(\frac{y}{x}\right)^{2} \text { so } y=\sqrt{\frac{A x^{6}-x^{2}}{2}} \text { or } y=x \sqrt{\frac{A x^{4}-1}{2}} \text { or } y=x \sqrt{\left(\frac{1}{2} e^{4 \ln x+4 c}-\frac{1}{2}\right)}$ (c) $x=1$ at $y=3$: $\begin{array}{r} 3=\sqrt{\frac{A-1}{2}} \\ =x \sqrt{\frac{19 x^{4}-1}{2}} \end{array}$	M1 A1 (3) M1 dM1 A1, B1 d M1 M1 A1 (7) M1 A1 (2) 12
	(a) B1 for statement printed or for $\frac{d y}{d x}=\left(x+v \frac{d x}{d v}\right) \frac{d v}{d x}$ First M1 is for RHS of equation only but for A1 need whole answer correct . (b) First M1 accept $\int \frac{1}{2 v+\frac{1}{v}} \mathrm{~d} v=\int \frac{1}{X} \mathrm{~d} x$ Second M1 requires an integration of correct form $1 / 4$ may be missing A1 for LHS correct with $1 / 4$ and B1 is independent and is for $\ln x$ Third M1 is dependent and needs correct application of log laws Fourth M1 is independent and merely requires return to y / x for v	

N.B. There is an IF method possible after suitable rearrangement - see note.

EDEXCEL
 J une 2008 Further Pure FP1 Mark Scheme

Note on Integrating Factor Method for qu 7
This is unusual, but just in case....
Writes $\frac{d x}{d v}=\frac{v x}{1+2 v^{2}}$
$\therefore \frac{d x}{d v}-\frac{v x}{1+2 v^{2}}=0$
$I F=e^{\int-\frac{v d v}{1+2 v^{2}}}$ M1
$=\mathrm{e}^{-\frac{1}{4}\left(1+2 v^{2}\right)}$
M1A1
$x\left(1+2 v^{2}\right)^{-\frac{1}{4}}=k$
B1
$A x^{4}=1+2 v^{2}$
dM1

