GCE Examinations

Pure Mathematics Module P4

Advanced Subsidiary / Advanced Level

Paper B

Time: 1 hour 30 minutes

Instructions and Information

Candidates may use any calculator except those with a facility for symbolic algebra and/or calculus.

Full marks may be obtained for answers to ALL questions.

Mathematical and statistical formulae and tables are available.

This paper has 7 questions.

Advice to Candidates

You must show sufficient working to make your methods clear to an examiner. Answers without working will gain no credit.

Written by Shaun Armstrong & Chris Huffer

© Solomon Press

These sheets may be copied for use solely by the purchaser's institute.

1. Find the set of values of x for which

$$\left|2x^2 - 5x\right| < x. \tag{6 marks}$$

2. (a) Sketch the curve C with the polar equation

$$r^2 = a^2 \sin^2 2\theta$$
, $0 \le \theta < 2\pi$. (3 marks)

- (b) Find the exact area of the region enclosed by one loop of the curve C. (5 marks)
- **3.** (a) Show that

$$\sum_{r=1}^{n} (r^2 + 1)(r - 1) = \frac{1}{12}n(n - 1)(3n^2 + 5n + 8).$$
 (6 marks)

(b) Hence evaluate

$$\sum_{r=5}^{25} (r^2+1)(r-1).$$
 (3 marks)

4. (a) Find the general solution of the differential equation

$$\frac{\mathrm{d}y}{\mathrm{d}x} - y \cot x = \sin 2x. \tag{6 marks}$$

(b) Given also that y = 2 when $x = \frac{\pi}{6}$, find the exact value of y when $x = \frac{2\pi}{3}$. (3 marks)

5.
$$f(x) \equiv x^3 - \ln(4 - x^2), x \in \mathbb{R}, -2 < x < 2.$$

(a) Show that one root, α , of the equation f(x) = 0 lies in the interval $1.0 < \alpha < 1.1$

(2 marks)

(b) Starting with x = 1.0, show that using the Newton-Raphson method twice gives an approximation to α that is correct to 6 decimal places.

(8 marks)

6. The complex numbers z_1 , z_2 and z_3 are given by

$$z_1 = 7 - i$$
, $z_2 = 1 + i\sqrt{3}$, $z_3 = a + ib$,

where a and b are rational constants.

Given that the modulus of z_1z_3 is 50,

(a) find the modulus of z_3 .

(3 marks)

Given also that the argument of $\frac{z_2}{z_3}$ is $\frac{7\pi}{12}$,

(b) find the argument of z_3 .

(3 marks)

(c) Find the values of a and b.

(2 marks)

(d) Show that $\frac{z_1}{z_3} = \frac{1}{5} (4 + 3i)$.

(3 marks)

(e) Represent z_1 , z_3 and $\frac{z_1}{z_3}$ on the same Argand diagram.

(2 marks)

(f) By considering the modulus and argument of z_1 and z_3 , explain why $\frac{z_3}{z_1} = \left(\frac{z_1}{z_3}\right)^*$.

(2 marks)

Turn over

7. (a) Given that $x = e^t$, find $\frac{dy}{dx}$ in terms of $\frac{dy}{dt}$ and show that

$$\frac{\mathrm{d}^2 y}{\mathrm{d}x^2} = \mathrm{e}^{-2t} \left(\frac{\mathrm{d}^2 y}{\mathrm{d}t^2} - \frac{\mathrm{d}y}{\mathrm{d}t} \right). \tag{5 marks}$$

(b) Show that the substitution $x = e^t$ transforms the differential equation

$$x^2 \frac{\mathrm{d}^2 y}{\mathrm{d}x^2} - x \frac{\mathrm{d}y}{\mathrm{d}x} - 3y = 6x^2$$

into the differential equation

$$\frac{\mathrm{d}^2 y}{\mathrm{d}t^2} - 2\frac{\mathrm{d}y}{\mathrm{d}t} - 3y = 6\mathrm{e}^{2t}.$$
 (3 marks)

(c) Given that when x = 1, y = 3 and $\frac{dy}{dx} = -5$, solve the differential equation

$$x^{2} \frac{d^{2} y}{dx^{2}} - x \frac{dy}{dx} - 3y = 6x^{2}.$$
 (10 marks)

END