GCE Examinations Advanced Subsidiary / Advanced Level

Mechanics Module M1

Paper A MARKING GUIDE

This guide is intended to be as helpful as possible to teachers by providing concise solutions and indicating how marks should be awarded. There are obviously alternative methods that would also gain full marks.

Method marks (M) are awarded for knowing and using a method.

Accuracy marks (A) can only be awarded when a correct method has been used.

(B) marks are independent of method marks.

Written by Shaun Armstrong & Chris Huffer © Solomon Press

These sheets may be copied for use solely by the purchaser's institute.

M1 Paper A – Marking Guide

1.	(a)	cons. of mom: $2(7) + 0 = (2 + 1.5)v$ $v = 4 \text{ ms}^{-1}$	M2 A1		
	<i>(b)</i>	impulse = Δ mom: i.e. for Q , = 1.5(4 – 0) = 6 Ns	M1 A1	(5)	
2.	(a)	speed of $B = \sqrt{[15^2 + (-8)^2]} = 17 \text{ ms}^{-1}$	M1 A1		
	(b)	vel. of <i>B</i> rel. to $A = (15i - 8j) - (8i - 3j)$ = $(7i - 5j)$ ms ⁻¹	M1 A1		
	(c)	req'd angle = $\tan^{-1}\frac{5}{7}$ = 35.5° to 1 dp	M1 A1	(6)	
3.	(a)	take moments about <i>B</i> (as mass of dog unknown) let reaction at <i>A</i> and <i>B</i> equal <i>R</i> ; $8R + 2R = 30g(4) + 80g(6)$ 10R = 600g so $R = 60g$ (or 588 N)	M1 M2 A1 A1		
	<i>(b)</i>	resolve \uparrow : $R + R = 80g + 30g + Mg$ 120g = 110g + Mg M = 10 kg	M1 M1 A1		
	(c)	no reaction at A; reaction at B greater (80g + 30g + weight of dog)	B2	(10)	
4.		60 D			
	(a)	$\operatorname{acc}^{n} = \frac{10-0}{15} = \frac{2}{3} \mathrm{ms^{-2}}$	M1 A1		
		eqn. of motion is $D - 60 = 78 \times \frac{2}{3}$	M1		
		D = 112 N	A1		
	<i>(b)</i>	eqn. of motion is $112 - 60 - 78g\sin\alpha = 0$ (since no acc ⁿ)	M1 A1		
		$\sin\alpha = \frac{52}{78g} = \frac{2}{3g}$	M1		
		$\alpha = 3.901$: $\alpha = 4^{\circ}$ (to nearest degree)	A1		

- (c) in (a) unlikely as increase in speed will cause increase in air resistance B1
 in (b) more reasonable as speed is constant B1
 (10)
- 5. *(a)*

resolve \uparrow : $R + 200 \sin 40^\circ - 50g = 0 \therefore R = 50g - 200 \sin 40^\circ$ M1 A1 resolve \rightarrow : $200 \cos 40^\circ - F = 0 \therefore F = 200 \cos 40^\circ$ M1 A1 $F = \mu R$, so $\mu = \frac{200 \cos 40^\circ}{50g - 200 \sin 40^\circ} = 0.424$ (3sf) M1 A1

(b) resolve $\uparrow: R + 200\sin 30^\circ - 50g = 0$ $\therefore R = 50g - 200\sin 30^\circ = 390$ M1 A1 resolve $\rightarrow: 200\cos 30^\circ - \mu R = 50a$ M1 A1 $50a = 100\sqrt{3} - 0.424(390)$ M1 $a = 0.16 \text{ ms}^{-2}$ A1 (12)

(14)
(10)

Total (75)

Performance Record – M1 Paper A

Question no.	1	2	3	4	5	6	7	Total
Topic(s)	cons. of mom., impulse	i, j vectors, rel. vel.	moments	dynamics	statics incl. friction	uniform accel.	connected bodies	
Marks	5	6	10	10	12	14	18	75
Student								