## GCE Examinations

## Advanced Subsidiary / Advanced Level

## Mechanics <br> Module M1

## Paper C

## MARKING GUIDE

This guide is intended to be as helpful as possible to teachers by providing concise solutions and indicating how marks should be awarded. There are obviously alternative methods that would also gain full marks.

Method marks (M) are awarded for knowing and using a method.
Accuracy marks (A) can only be awarded when a correct method has been used.
(B) marks are independent of method marks.

Written by Shaun Armstrong \& Chris Huffer
© Solomon Press

## M1 Paper C - Marking Guide

1. (a) ratio is $\frac{\frac{3}{4} d}{3}: \frac{\frac{1}{4} d}{2}$

M1 A1

$$
=\frac{1}{4}: \frac{1}{8}=2: 1
$$

(b) $80 \mathrm{kmh}^{-1}$ for $5 \mathrm{hrs}=400 \mathrm{~km}$
$\frac{3}{4}$ of $400=300 \mathrm{~km}$ M1
av. speed on first part of journey $=\frac{300}{3}=100 \mathrm{kmh}^{-1} \quad$ M1 A1
2. (a)

resolve $\uparrow: T_{1} \sin 35^{\circ}+T_{2} \sin 40^{\circ}-0.7 g=0$
M1 A1
resolve $\rightarrow: T_{2} \cos 40^{\circ}-T_{1} \cos 35^{\circ}=0$
M1
from (2), $T_{2}=1.069 T_{1}$
M1
sub. into (1) to get $T_{1}=5.44 \mathrm{~N}$ (3sf)
M1 A1
and so $T_{2}=5.82 \mathrm{~N}$
A1
(b) e.g. jacket likely to slide to a position near centre of line

B1
(8)
3. (a)

| $t=0 \Rightarrow \mathbf{v}=8 \mathbf{i}+6 \mathbf{j}$ | M1 |
| :--- | :--- |
| speed $=\sqrt{8^{2}+6^{2}}=10 \mathrm{~ms}^{-1}$ | M1 A1 |
| parallel to $(\mathbf{i}+\mathbf{j})$ when $3 t^{2}-2 t+8=5 t+6$ | M1 |
| i.e. $3 t^{2}-7 t+2=0$ | A1 |
| $(3 t-1)(t-2)=0$ | M1 A1 |
| $t=\frac{1}{3}$ or 2 | A1 |

(c) e.g. improbably large values for the speed of the car

B1
(9)
4. (a) moments about $O$ (anticlockwise +ve$)=5(2)+2(3)$

M2
$=16 \mathrm{Nm}$ anticlockwise
A2
(b) resultant about $O$ is zero $\Rightarrow 4 p+q=16$

M1 A1
resultant about $A$ is $34 \mathrm{Ns} \Rightarrow 6 p+4 q=34$
M1 A1
solving simult. $p=3, q=4$
M1 A1
5. (a) $\operatorname{acc}^{\mathrm{n}}=\frac{36-0}{9}=4 \mathrm{~ms}^{-2}$

M1 A1
(b)

(c) after $t$ seconds $s_{\mathrm{M}}=\frac{1}{2}(5)(30)+30(t-5) \quad($ for $t>5)$

M1 A1
after $t$ seconds $\quad s_{\mathrm{C}}=\frac{1}{2}(9)(36)+36(t-9) \quad($ for $t>9)$
M1 A1
car level with bike when $s_{\mathrm{M}}=s_{\mathrm{C}}$ i.e. $75+30 t-150=162+36 t-324$ $t=14.5$ seconds

A1
6. (a) eqn. of motion for Dermot: $54 g-T=54(1)$
eqn. of motion for Corinne (mass $M$ ): $T-M g=M(1)$
M1 A1
$54 g-M g=54+M$
M1
$M(1+g)=54(g-1)$
M1
mass of Corinne $=44 \mathrm{~kg}$
(b) $\quad T=44(1+9.8) \quad$ (from eqn. of motion of Corinne)

M2
$T=475.2 \mathrm{~N}$
A1
(c) force on pulley $=2 T=950.4 \mathrm{~N}$

M1 A1
(d) e.g. rough branch will mean lower (possibly zero) acc ${ }^{\text {n. }}$

B1
7. (a) $3 M(3)-2 M(5)=-3 M v+2 M v$

M1 A1
${ }^{-} M={ }^{-} M v$ i.e. $v=1 \mathrm{~ms}^{-1}$
M1 A1
(b) $\quad\left|3 M\left(1-{ }^{-} 3\right)\right|=24$
$M=2$
M1 A1
A1
(c)


$$
\begin{array}{ll}
R=6 g \quad-F=m a & \text { M2 } \\
\text { but } \quad F=\mu R \text { so } a=\frac{-\mu R}{m}=\frac{-0.1 \times 6 g}{6}={ }^{-} 0.98 \mathrm{~ms}^{-2} & \text { M1 A1 } \\
u=1, v=0, a=-0.98 ; \text { use } v=u+a t & \text { M1 } \\
0=1-0.98 t \text { i.e. } t=1.02 \text { seconds } & \text { M1 A1 }
\end{array}
$$

Performance Record - M1 Paper C

| Question no. | 1 | 2 | 3 | 4 | 5 | 6 | 7 | Total |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Topic(s) | dist-time graph | statics | $\mathrm{i}, \mathrm{j}$, vectors | $i, j$, moments | speed- <br> time <br> graph, <br> uniform <br> accel. | connected bodies | $\begin{aligned} & \hline \text { cons. of } \\ & \text { mom., } \\ & \text { impulse, } \\ & \text { friction } \end{aligned}$ |  |
| Marks | 8 | 8 | 9 | 10 | 13 | 13 | 14 | 75 |
| Student |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |

