GCE Examinations Advanced Subsidiary / Advanced Level

Mechanics Module M1

Paper C MARKING GUIDE

This guide is intended to be as helpful as possible to teachers by providing concise solutions and indicating how marks should be awarded. There are obviously alternative methods that would also gain full marks.

Method marks (M) are awarded for knowing and using a method.

Accuracy marks (A) can only be awarded when a correct method has been used.

(B) marks are independent of method marks.

Written by Shaun Armstrong & Chris Huffer © Solomon Press

These sheets may be copied for use solely by the purchaser's institute.

M1 Paper C – Marking Guide

1.	(a)	ratio is $\frac{\frac{3}{4}d}{3}:\frac{\frac{1}{4}d}{2}$ = $\frac{1}{4}:\frac{1}{8}=2:1$	M1 A1 M1 A1
	<i>(b)</i>	80 km h ⁻¹ for 5 hrs = 400 km	M1

(b)	$80 \text{ kmh}^{-1} \text{ for 5 hrs} = 400 \text{ km}$	M1			
	$\frac{3}{4}$ of 400 = 300 km	M1			
	av. speed on first part of journey = $\frac{300}{3}$ = 100 kmh ⁻¹	M1 A1	(8)		

2.

(a) T_1 0.7g resolve \uparrow : $T_1 \sin 35^\circ + T_2 \sin 40^\circ - 0.7g = 0$ (1) M1 A1 resolve \rightarrow : $T_2 \cos 40^\circ - T_1 \cos 35^\circ = 0$ (2)M1 from (2), $T_2 = 1.069 T_1$ M1 sub. into (1) to get $T_1 = 5.44$ N (3sf) M1 A1 and so $T_2 = 5.82$ N A1 *(b)* e.g. jacket likely to slide to a position near centre of line B1 (8) $t = 0 \Rightarrow \mathbf{v} = 8\mathbf{i} + 6\mathbf{j}$ 3. (a) M1 speed = $\sqrt{8^2 + 6^2} = 10 \text{ ms}^{-1}$ M1 A1 *(b)* parallel to (i + j) when $3t^2 - 2t + 8 = 5t + 6$ M1 i.e. $3t^2 - 7t + 2 = 0$ A1 (3t-1)(t-2) = 0M1 A1 $t = \frac{1}{3}$ or 2 A1 (c) e.g. improbably large values for the speed of the car B1 (9) moments about O (anticlockwise +ve) = 5(2) + 2(3)M2 4. *(a)* = 16 Nm anticlockwise A2 *(b)* resultant about *O* is zero $\Rightarrow 4p + q = 16$ M1 A1 resultant about A is 34 Ns \Rightarrow 6p + 4q = 34 M1 A1 solving simult. p = 3, q = 4(10) M1 A1 $\operatorname{acc}^{n} = \frac{36-0}{9} = 4 \text{ m s}^{-2}$ 5. M1 A1 (a) *(b)* speed $(m s^{-1})$ 36 car 30 motorbike B4 time (seconds) O0 after t seconds $s_{\rm M} = \frac{1}{2} (5)(30) + 30(t-5)$ (c) (for t > 5) M1 A1 after t seconds $s_{\rm C} = \frac{1}{2} (9)(36) + 36(t-9)$ (for t > 9) M1 A1 car level with bike when $s_{\rm M} = s_{\rm C}$ i.e. 75 + 30t - 150 = 162 + 36t - 324M2

t = 14.5 seconds

A1

(13)

6.	(a)	eqn. of motion for Dermot: $54g - T = 54(1)$ eqn. of motion for Corinne (mass M) : $T - Mg = M(1)$ 54g - Mg = 54 + M M(1 + g) = 54(g - 1) mass of Corinne = 44 kg	M1 A1 M1 A1 M1 M1 A1			
	(b)	T = 44(1 + 9.8) (from eqn. of motion of Corinne) T = 475.2 N	M2 A1			
	(c)	force on pulley = $2T = 950.4$ N	M1 A1			
	(d)	e.g. rough branch will mean lower (possibly zero) acc^{n} .	B1	(13)		
7.	(a) $3M(3) - 2M(5) = {}^{-}3Mv + 2Mv$ ${}^{-}M = {}^{-}Mv$ i.e. $v = 1 \text{ ms}^{-1}$		M1 A1 M1 A1			
	(b)	3M(1 - 3) = 24 M = 2	M1 A1 A1			
	(c)	$F \checkmark F$				
		R = 6g $F = ma$	M2			
		but $F = \mu R$ so $a = \frac{-\mu R}{m} = \frac{-0.1 \times 6g}{6} = -0.98 \text{ ms}^{-2}$	M1 A1			
		u = 1, v = 0, a = -0.98; use $v = u + at0 = 1 - 0.98t$ i.e. $t = 1.02$ seconds	M1	(14)		
		0 - 1 - 0.96i i.e. $i - 1.02$ seconds	M1 A1	(14)		

Total (75)

Performance Record – M1 Paper C

Question no.	1	2	3	4	5	6	7	Total
Topic(s)	dist-time graph	statics	i, j, vectors	i, j, moments	speed - time graph, uniform accel.	connected bodies	cons. of mom., impulse, friction	
Marks	8	8	9	10	13	13	14	75
Student								