GCE Examinations Advanced Subsidiary / Advanced Level

Mechanics Module M1

Paper G

MARKING GUIDE

This guide is intended to be as helpful as possible to teachers by providing concise solutions and indicating how marks should be awarded. There are obviously alternative methods that would also gain full marks.

Method marks (M) are awarded for knowing and using a method.

Accuracy marks (A) can only be awarded when a correct method has been used.

(B) marks are independent of method marks.

Written by Shaun Armstrong & Chris Huffer

© Solomon Press

These sheets may be copied for use solely by the purchaser's institute.

M1 Paper G - Marking Guide

1.

$$A \xrightarrow{R} x \xrightarrow{T} B$$

resolve
$$\uparrow$$
: $R + T = 10g$; $R + \frac{3}{2}R = 10g$

$$\frac{5}{2}R = 10g$$
; : $R = 4g$ so $T = 6g$

moments about pivot:
$$10gx - 4(6g) = 0$$

$$10gx = 24g$$
, so $x = 2.4$ and hence c.o.m. is 4.4 m from A

(6)

(9)

2. (a) mass of ball remains constant, force is constant F = ma so a constant

B2

(b) (i)
$$a = \frac{\Delta v}{t} = \frac{1}{4} [(10\mathbf{i} + 9\mathbf{j}) - (2\mathbf{i} - 3\mathbf{j})] = 2\mathbf{i} + 3\mathbf{j}$$

mag. of
$$\mathbf{a} = \sqrt{(2^2 + 3^2)} = \sqrt{13} = 3.61 \text{ ms}^{-2} \text{ (3sf)}$$

$$F = ma = 2(2i + 3j) = 4i + 6j$$

req'd angle = $tan^{-1} \frac{3}{2} = 56.3^{\circ} (3sf)$

3. (a) particle

(ii)

В1

resolve // to plane:
$$P \cos 10^{\circ} - 3g \sin \alpha = 0$$

$$P \cos 10^\circ = 3g(\frac{3}{5}) : P = 17.9 \text{ (1dp)}$$

(c) resolve perp. to plane:
$$R + P \sin 10^{\circ} - 3g \cos \alpha = 0$$

$$R = 3g(\frac{4}{5}) - P \sin 10^{\circ} = 20.4 \text{ N (1dp)}$$

(9)

(9)

4. (a) cons. of mom.
$$0.05(400) = (0.05 + 4.95)v$$

 $20 = 5v : v = 4 \text{ ms}^{-1}$

(b)
$$R = mg$$
; $^-F = ma$

but
$$F = \mu R$$
; : $a = \frac{-\mu R}{m} = \frac{-\mu mg}{m} = \mu g$

use with
$$u = 4, v = 0, s = 4$$

$$v^2 = u^2 + 2as$$
, so $0 = 16 - 8\mu g$

$$\mu = \frac{16}{8g} = \frac{1}{8g}$$

5. (a) disp. of F rel to
$$G = [(2t-3)-2]\mathbf{i} + (t-5)\mathbf{j} = (2t-5)\mathbf{i} + (t-5)\mathbf{j}$$
 M1 A1

(b)
$$d^2 = (2t-5)^2 + (t-5)^2$$
 M1
 $= 4t^2 - 20t + 25 + t^2 - 10t + 25 = 5t^2 - 30t + 50$ M1 A1
 $= 5(t^2 - 6t + 10) = 5[(t-3)^2 + 1]$ M2
min. d^2 (and hence d) when $t = 3$ A1

(c) when
$$t = 3$$
, $d^2 = 5$ M1 A1
dist. = $\sqrt{5} = 2.24$ m (3sf) A1 (11)

6. (a) speed
$$(ms^{-1}) 5U$$

$$\frac{2U}{O}$$
6 22 24 time (seconds) B2

(b) using
$$v = u + at$$
 with $v = 2U$, $u = 5U$, $t = 6$ gives 1st decel. = $\frac{1}{2} U \text{ m s}^{-2}$ M1 A1 using $v = u + at$ with $v = 0$, $u = 2U$, $t = 2$ gives 2nd decel. = $U \text{ m s}^{-2}$ M1 A1

(c) area under graph = dist. travelled = 220 m M1
$$\frac{1}{2}$$
 (6)(3U) + 22(2U) + $\frac{1}{2}$ (2)(2U) = 220 M1 A2 $55U = 220$ $\therefore U = 4 \text{ ms}^{-1}$ M1 A1 (12)

7.
$$R_{T} \longrightarrow T \longrightarrow D$$

(a)
$$M_C: M_T = 1200: 800 = 3: 2$$
 $R_C = 300 \text{ N} : R_T = 200 \text{ N}$ M1 A1

(b) for car and trailer, eqn. of motion is
$$3000 - 500 = 2000a$$
 M1 giving $a = \frac{5}{4}$ ms⁻² M1 A1

(c) for car, eqn. of motion is
$$3000 - 300 - T = 1200 \times \frac{5}{4}$$
 M1
giving $T = 1200 \text{ N}$ M1 A1

(d) total of braking + resistive forces = 1500 N

$$^{-1}500 = 2000a$$
 so $a = ^{-\frac{3}{4}}$ ms $^{-2}$ M1 A1
 $u = 24, v = 0, a = ^{-\frac{3}{4}}$ use $v^2 = u^2 + 2as$ M1
 $0 = 576 - \frac{3}{2}s$ $\therefore s = 384$ m M1 A1

(e) for car (
$$\leftarrow$$
): $T + 1000 + 300 = 1200(\frac{3}{4})$ M1 A1
 $T = -400 \text{ N}$ \therefore $T = 400 \text{ N}$, pushing the car M1 A1

Total (75)

Performance Record – M1 Paper G

Question no.	1	2	3	4	5	6	7	Total
Topic(s)	moments	i , j , <i>F</i> = ma	statics	cons. of mom., friction	rel. posn. i, j	speed - time graph, uniform accel.	connected bodies	
Marks	6	9	9	9	11	12	19	75
Student								