GCE Examinations Advanced Subsidiary / Advanced Level

Mechanics Module M1

Paper I MARKING GUIDE

This guide is intended to be as helpful as possible to teachers by providing concise solutions and indicating how marks should be awarded. There are obviously alternative methods that would also gain full marks.

Method marks (M) are awarded for knowing and using a method.

Accuracy marks (A) can only be awarded when a correct method has been used.

(B) marks are independent of method marks.

Written by Shaun Armstrong & Chris Huffer © Solomon Press

These sheets may be copied for use solely by the purchaser's institute.

M1 Paper I – Marking Guide

1.		$-3q\mathbf{j}$) + $(5q\mathbf{i} + 4p\mathbf{j}) = ^{-}2\mathbf{i} + 9\mathbf{j}$ ting coeffs of \mathbf{i} and \mathbf{j} gives $2p + 5q = ^{-}2$	M1		
	-	e simult. to give $p = \frac{3}{2}$, $q = 1$	M1 A1 M1 A1	(5)	
	SOLVE	p = 1	MI AI	(5)	
2.	(a)	Reaction 20 N			
		↓ Weight	B2		
	(b)	resolve // to plane: $20 - W \sin 25 = 0$ $W = \frac{20}{\sin 25}$ so $W = 47.3$ N (3sf)	M1 A1		
		resolve perp. to plane: $R - W\cos 25 = 0$ $R = 47.324 \times \cos 25 = 42.9$ N (3sf)	M1 A1		
	(c)	(i) particle(ii) inextensible	B1 B1		
	(d)	W and R will both be lower	B2	(10)	
3.	(a)	mag. of impulse is same as cannon on shell impulse = Δ mom = 3(200 - 0) = 600 Ns (towards cannon)	B1 M1 A1		
	<i>(b)</i>	for cannon, $mv - mu = 600$ $600v = 600$ so $v = 1 \text{ ms}^{-1}$	M1 A1		
	(c)	$R = mg; \ ^{-}F = ma$ but $F = \mu R \therefore a = \frac{-\mu R}{m} = \frac{-\mu mg}{m} = ^{-}\mu g$ use with $u = 1, v = 0$ $v^{2} = u^{2} + 2as$, so $0 = 1 - 2(0.75)(9.8)s$ s = 0.0680 m = 7 cm (nearest cm)	M1 M1 A1 M1 M1 A1	(11)	
4.	(a)	displacement of plane = $(32\mathbf{i} + 19\mathbf{j}) - (80\mathbf{i} + 5\mathbf{j})$	M1		
		$= ^{-}48\mathbf{i} + 14\mathbf{j} \text{ in 10 mins.}$ ∴ in 30 mins, displacement = $3 \times (^{-}48\mathbf{i} + 14\mathbf{j}) = ^{-}144\mathbf{i} + 42\mathbf{j}$ so posn. vector at 2:30p.m. is ($^{-}64\mathbf{i} + 47\mathbf{j}$)	A1 M1 A1		
	(b)	in 1 hr. displacement of plane = $6 \times (-48\mathbf{i} + 14\mathbf{j}) = -288\mathbf{i} + 84\mathbf{j}$ speed = $\sqrt{[(-288)^2 + 84^2]} = \sqrt{90000} = 300 \text{ km h}^{-1}$	M1 A1 M1 A1		
	(c)	$14 \boxed{48}$			
		req'd angle = $\tan^{-1} \frac{14}{48} = 16.26^{\circ}$	M1 A1		
		$\therefore \text{ bearing} = 16.26 + 270 = 286^{\circ} \text{ (nearest deg)}$	A1	(11)	

5.	(a)	e.g. since acc^n and $decel^n$ are uniform, time for $decel^n = \frac{1}{1.5}$ time for acc^n \therefore $decel^n = 4$ seconds, so total time = 6 + 50 + 4 = 60 seconds	^a M1 M1 A1		
	(b)	velocity (ms ⁻¹) V			
		O^{\dagger} 6 56 60 time (seconds)	B3		
	(c)	area under graph = $\frac{1}{2}(6)(V) + 50V + \frac{1}{2}(4)(V) = 1320$ 55V = 1320 so V = 24 ms ⁻¹	M1 M1 A1		
	(d)	car accelerates more quickly at first, but acceleration decreases throughout the six seconds	B2	(11)	
6.	(a)	uniform – same density throughout rod – bench probably fairly rigid, doesn't bend very much	B1 B1		
	<i>(b)</i>	$ \begin{array}{c} $			
		bench on pt. of tilting so $R = 0$ moments about $S: 55g(0.3) - Mg(1.1) = 0$ $1.1M = 16.5 \therefore M = 15 \text{ kg}$	B1 M2 A1		
	(c)	$ \begin{array}{c} R \uparrow & S \uparrow \\ \hline $			
		resolve $\uparrow: R + S = 33g + 15g = 48g$ moments about $S: 33g(0.7) + 15g(1.1) - R(2.2) = 0$ $2.2R = 23.1g + 16.5g \therefore R = 18g$ $S = 30g \therefore S: R = 30g: 18g = 5: 3$	M1 M1 M1 A1 M1 A1	(12)	
7.	(a)	for car + caravan, eqn. of motion is $3000 - 900 - 2100g \sin \alpha = 2100a$ $2100 - 1470 = 2100a \therefore a = 0.3 \text{ ms}^{-2}$	M2 A1 M1 A1		
	(b)	for caravan, $T - 500 - 850g\sin\alpha = 850 \times 0.3$ $T - 500 - 595 = 255$ \therefore $T = 1350$ N	M1 M1 A1		
	(c)	$u = 0, a = 0.3, s = 540$ use $v^2 = u^2 + 2as$ $v^2 = 0 + 2(0.3)(540) = 324 \therefore v = 18 \text{ ms}^{-1}$	M1 M1 A1		
	(d)	$D - 900 = 0 \therefore D = 900 \text{ N}$ % reduction = $\frac{3000 - 900}{3000} \times 100 = 70 \%$	M1 A1 M1 A1	(15)	
			T (1		

Total (75)

Performance Record – M1 Paper I

Question no.	1	2	3	4	5	6	7	Total
Topic(s)	i, j , forces	statics	cons. of mom., impulse, friction	rel. posn. i, j	vel - time graph, uniform accel.	moments	connected bodies	
Marks	5	10	11	11	11	12	15	75
Student								