GCE Examinations

Advanced Subsidiary / Advanced Level

Mechanics
 Module M1

Paper J

MARKING GUIDE

This guide is intended to be as helpful as possible to teachers by providing concise solutions and indicating how marks should be awarded. There are obviously alternative methods that would also gain full marks.

Method marks (M) are awarded for knowing and using a method.
Accuracy marks (A) can only be awarded when a correct method has been used.
(B) marks are independent of method marks.

Written by Shaun Armstrong \& Chris Huffer
© Solomon Press

M1 Paper J - Marking Guide

1. (a) speed $=17=$ mag. of vel. $=\sqrt{ }\left(8^{2}+\lambda^{2}\right)$

M1
M1 A1
(b) $\boldsymbol{a}=\frac{\Delta \boldsymbol{v}}{t}=\frac{1}{5}[(3 \mathbf{i}+5 \mathbf{j})-(8 \mathbf{i}+15 \mathbf{j})]={ }^{-} \mathbf{i}-2 \mathbf{j}$
$\mathbf{F}=m \boldsymbol{a}=2(\mathbf{i}-2 \mathbf{j})={ }^{-} 2(\mathbf{i}+2 \mathbf{j})$ so $\mu={ }^{-} 2$
M2 A1
M1 A1
(8)
2. (a)

resolve $\uparrow: R-P \cos 60^{\circ}-0.5 g=0 \quad \therefore R=0.5 g+P \cos 60^{\circ} \quad$ M1 A1
resolve $\rightarrow: P \sin 60^{\circ}-F=0 \quad$ M1
$F=\mu R=\frac{1}{\sqrt{3}}(0.5 g+0.5 P)$
M1 A1
sub. in giving $\frac{\sqrt{3}}{2} P-\frac{1}{\sqrt{3}}(0.5 g+0.5 P)=0$
$3 P-P-g=0 \quad \therefore 2 P=g$ so $P=\frac{g}{2}$
(b) brush is moved slowly so very little air resistance

B1
(8)
3. (a)
(a) cons. of mom: $1500(2)+0=(1500+750) V$

$$
3000=2250 V \therefore \quad V=\frac{4}{3}
$$

(b) impulse $=\Delta$ mom $=750\left(\frac{4}{3}-0\right)=1000 \mathrm{Ns}$

M1 A1
(c) car has $(27+9) \mathrm{m}$ in which to stop and travels 18 m in first second
must stop from $18 \mathrm{~ms}^{-1}$ in 18 m
A1
$u=18, s=18, v=0, a={ }^{-} f$
M1
$v^{2}=u^{2}+2 a s$, so $0=324-36 f$
M1
$f=9$ so to stop before hitting other car, $f>9 \quad$ A1
4.

(a)	eqn. of motion for $A: \quad T-6 g=6 a$	M1
	eqn. of motion for $B \& \mathrm{C}: \quad 8 g-T=8 a$	M1
	$(1)+(2)$ gives $2 g=14 a$ i.e. $a=\frac{g}{7} \mathrm{~ms}^{-2}$	M1 A1
(b)	sub. a into (1) to get $T=6 a+6 g=\frac{6 g}{7}+6 g$	M1
	force on pulley $=2 T=\frac{96 \mathrm{~g}}{7}$	M1 A1
(c)	resolve \downarrow for $C: 3 g-R=3 \times \frac{g}{7}$	M1
	$R=3 g-\frac{3 g}{7}=\frac{18 g}{7}$	M1 A1

5. (a) For $Q: a=\frac{\Delta v}{t}=\frac{6-0}{6}=1$
$u=0, v=4$, use $v=u+a t: 4=0+1 t$ i.e. $t=4$ seconds
(b) speed speed
$\left(\mathrm{ms}^{-1}\right)$

(c) $\quad Q$ will catch P when area under Q graph = area under P graph

$$
\therefore \frac{1}{2}(6)(6)+6(t-6)=4 t
$$

i.e. $18+6 t-36=4 t \therefore 2 t=18 \therefore t=9$
after 9 seconds, P has travelled $4 \times 9=36 \mathrm{~cm}$,
$\therefore Q$ reaches top first if $x>36$
M1 A1
6. (a) as rock moves further from A, tension at A decreases linearly and is a minimum when rock reaches B.

B3

(b) max. tension when rock at one end (A, say)
moments about $B: 50 g(4)+M g(8)-T_{A}(8)=0$
$8 M g=8 T_{A}-200 g \therefore M g=T_{A}-25 g$
M1
given $T_{A} \leq 40 g ; M g \leq 40 g-25 g(=15 g)$
M1
i.e. $M \leq 15$ A1
(c) assume rock placed as close to A as poss. so that $T_{A}=40 g$
resolve (\uparrow): $\quad T_{A}+T_{B}=50 g+20 g=70 g \therefore T_{B}=30 g$
M1 A1
moments about centre of plank : $T_{A}(4)-T_{B}(4)-20 g(d)=0$
M1
$160 g-120 g-20 g d=0 \therefore d=2$
rock can be 2 m either side of centre i.e. 4 m out of $8 \mathrm{~m}=\frac{1}{2}$ plank
A1
7. (a) cargo ship travels $(9 t \mathbf{i}-6 t \mathbf{j}) \mathrm{km}$ in t hours
$\operatorname{pos}^{\mathrm{n}}$ vector after t hours is $[(7 \mathbf{i}+56 \mathbf{j})+(9 t \mathbf{i}-6 t \mathbf{j})] \mathrm{km} \quad$ M1 $=[(7+9 t) \mathbf{i}+(56-6 t) \mathbf{j}] \mathrm{km} \quad \mathrm{A} 1$
pos $^{\mathrm{n}}$ vector of ferry after t hours is $(12 t \mathbf{i}+18 t \mathbf{j}) \mathrm{km}$
(b) they will collide if coeffs. of \mathbf{i} and \mathbf{j} in pos ${ }^{\mathrm{n}}$ vectors are equal
$7+9 t=12 t$ and $56-6 t=18 t$ are both satisfied when $t=\frac{7}{3}$
collision after $\frac{7}{3} \mathrm{hrs}$ or 2 hrs 20 mins i.e. at 8:20 a.m.
pos $^{\text {n }}$ vector $=12\left(\frac{7}{3}\right) \mathbf{i}+18\left(\frac{7}{3}\right) \mathbf{j}=(28 \mathbf{i}+42 \mathbf{j})$
B1
M1 A1
A1
M1 A1
(c) at 8 a.m. ferry at $(24 \mathbf{i}+36 \mathbf{j})$
$\frac{1}{3} \mathrm{hr}$ at $21 \mathbf{i}+6 \mathbf{j}=7 \mathbf{i}+2 \mathbf{j}$ so at $8: 20$ a.m. ferry is at $31 \mathbf{i}+38 \mathbf{j}$
M2 A1
at 8:20 a.m cargo ship is at $(28 \mathbf{i}+42 \mathbf{j})$
dist. between $=\sqrt{ }\left(3^{2}+4^{2}\right)=5 \mathrm{~km}$
M1 A1

Performance Record - M1 Paper J

Question no.	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$	$\mathbf{6}$	$\mathbf{7}$	Total
Topic(s)	\mathbf{i}, \mathbf{j}, $F=m a$							
Marks		statics, friction	cons. of mom., impulse, uniform accel.	connected bodies	speed - time graph, uniform accel.	moments	rel. posn. \mathbf{i}, \mathbf{j}	
Student	8	8	10	10	11	14	14	75

