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Introduction

These lecture notes are a projection of the MA244 Analysis III course 2012/2013, delivered by Dr Claude
Baesens at the University of Warwick. The up-to-date version of these notes should be found here:

http://www.tomred.org/lecture-notes.html

Students taking this course should also take a look at Alex Wendland’s Dropbox notes:

https://www.dropbox.com/sh/5m63moxv6csy8tn/iRnmC5Vfi_/Year%202/Analysis%20III

These notes are, to my knowledge, complete, but the tedious treasure hunt of errors will always be an open
game. If you spot an error, or you want the source code to fiddle with the notes in your way, e-mail me
at me@tomred.org. Writing these up has been a benefit to me (there aren’t many foolproof ways to avoid
proper work), but most of all I hope they’re helpful, and good luck!

Tom ♥
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1 THE INTEGRAL FOR STEP FUNCTIONS

1 The Integral for Step Functions

Definition 1: For a ≤ b in R, the function ϕ: [a, b] → R is called a step function if there is a finite set of
points P ⊂ (a, b), called a partition, so that ϕ is constant on each subinterval of (a, b) \ P .

a P1 P2 P3 b = PkPk−1

If the points of P are numbered in order such that a =: P0 < P1 < P2 < ... < Pk−1 < Pk := b, where
k = |P | − 1, then [a, b] is partitioned into k subintervals [Pj−1, Pj ], 1 ≤ j ≤ k.

We define Cj be the constant value of ϕ|(Pj−1,Pj). If P , Q are partitions and P ⊂ Q, we say that Q is a
refinement of P . Also the common refinement of two partitions, P and Q, is P ∪Q.

Proposition 1: Fix a ≤ b ∈ R. The set of functions f : [a, b] → R is a real vector space, say W . The
subset B[a, b] of bounded functions, the subset C[a, b] of continuous functions and the subset S[a, b] of step
functions are vector subspaces of W with S[a, b] ⊂ B[a, b], and C[a, b] ⊂ B[a, b].

Proof.

• Let f, g : [a, b] → R and λ, µ ∈ R. Then λf + µg : [a, b] → R is defined ∀x ∈ [a, b] by (λf + µg)(x) =
λf(x) +µg(x). As this is defined, addition of f and g and scalar multiplication with these functions is
defined. This is the definition of a vector space, so f : [a, b]→ R is a real vector space, W .

• f, g ∈ B[a, b]→ R =⇒ ∀x ∈ [a, b], |f(x)| ≤ K and |g(x)| ≤ L for some K,L ≥ 0

=⇒ ∀x ∈ [a, b], |(λf + µg)(x)| = |λf(x) + µg(x)|
≤ |λ||f(x)|+ |µ||g(x)|
≤ |λ|K + |µ|L

∴ λf + µg ∈ B[a, b], and also f ≡ 0 ∈ B[a, b]
∴ B[a, b] is a vector subspace of W .

• If ϕ and ψ are step functions constant on the open intervals of partitions P,Q respectively then ϕ,ψ
and so λϕ, µψ are constant on the open intervals of P ∪ Q so λϕ + µψ ∈ S[a, b] so S[a, b] is a vector
subspace of W . If ϕ ∈ S[a, b] it takes at most 2k+ 1 values, i.e. {Cj : i ≤ j ≤ k}∪ {ϕ(Pj) : 0 ≤ j ≤ k}
so ϕ ∈ B[a, b].
∴ S[a, b] is a vector subspace of W .
∴ S[a, b] ⊂ B[a, b]

• Recall from Analysis II that f, g : [a, b]→ R cts =⇒ λf + µg cts. Also cts f : [a, b]→ R is bounded.
Thus C[a, b] ⊂ B[a, b].
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1 THE INTEGRAL FOR STEP FUNCTIONS

Definition 2: Let ϕ : [a, b] → R be a step function constant on the open intervals of a partition P =
{P1, P2, ...Pk−1} with ∀j ∈ {1, ..., k}∀x ∈ (Pj−1, Pj)), ϕ(x) = Cj . Define∫ b

a

ϕ :=

k∑
j=1

Cj(Pj − Pj−1)

Note: This definition ignores ϕ(Pj) and if Cj < 0 then the contribution is negative.

For example, take this step function on interval [a, b] with six partitions, with the shading corresponding to
the area.

a = P0 P1 P2 P3 b = P6P5P4

Lemma 2: For a step function ϕ : [a, b]→ R,
∫ b
a
ϕ is independent of the partition.

Proof. If P and Q are partitions for which ϕ is constant on their open intervals it suffices to show that the
integral of ϕ is the same using P and R := P ∪ Q (because then also the same using Q and R). When
comparing P and R, it suffices to add the points one at a time. Thus consider P and P ∪ {r} where
Pi−1 < r < Pi.
Pi−1 < x < r =⇒ ϕ(x) = Ci, r < x < Pi =⇒ ϕ(x) = Ci, and Ci(r − Pj−1) + Ci(Pi − r) = Ci(Pi − Pi−1).

The other summands
∑
j 6=1 Cj(Pj − Pj−1) are the same for P and P ∪ {r} so

∫ b
a
ϕ is the same using P and

P ∪ {r}.

Now we establish properties of this integral of step functions, additivity, linearity, bounds and the Funda-
mental Theorem of Calculus.

Let ϕ : [a, b]→ R be a step function and a ≤ u < v < w ≤ b. Then ϕ|[u,w] is a step function using P ∩ (u,w).

Proposition 3 (additivity): ϕ ∈ S[a, b] satisfies
∫ w
u
ϕ =

∫ v
u
ϕ+

∫ w
v
ϕ.

Proof. Take partition u = P0 < P1 < ... < Pk−1 < Pk = v = q0 < q1 < ... < qi = w so that ϕ is constant on
each open interval, Cj on (Pj−1, Pj) and C ′j on (qj−1, qj). By Lemma 2:

∫ w

u

ϕ =

k∑
j=1

Cj(Pj − Pj−1) +

i∑
j−1

C ′j(qj − qj−1) =

∫ v

u

ϕ+

∫ w

v

ϕ

Note that this gives
∫ b
a
ϕ =

∫ P1

P0
ϕ +

∫ P2

P1
ϕ + ... +

∫ Pk
Pk−1

ϕ where each ϕ|(Pj−1,Pj) is a constant function so

Proposition 3 reduces integrating step functions to integrating constant functions. Convention:
∫ u
u
ϕ = 0

then Proposition 3 holds for u ≤ v ≤ w.
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1 THE INTEGRAL FOR STEP FUNCTIONS

Proposition 4 (linearity): Let ϕ,ψ ∈ S[a, b] and λ, µ ∈ R. Then:∫ b

a

(λϕ+ µψ) = λ

∫ b

a

ϕ+ µ

∫ b

a

ψ (∗)

Hence I : S[a, b]→ R, I(ϕ) :=
∫ b
a
ϕ is a linear map.

Proof. As in Lemma 2 let R = P ∪Q a partition so that on each open interval (rj−1, rj), ϕ, ψ and so λϕ+µψ
are constant. Proposition 3 reduces the proof of (∗) to its proof on each such interval where it is obvious.
Hence I is linear.

Proposition 5 (fundamental theorem of calculus for step functions): Let ϕ ∈ S[a, b] with ϕ|(Pj−1,Pj) = Cj ,
1 ≤ j ≤ k where a = p0 < p1 < ... < pk−1 < pk = b
Then Φ : [a, b]→ R, Φ(x) :=

∫ x
a
ϕ is differentiable on

k⋃
j=1

(Pj−1, Pj) and ∀x ∈
⋃

(Pj−1, Pj), Φ′(x) = ϕ(x)

Proof. For 1 ≤ j ≤ k, ∀x ∈ (Pj−1, Pj), by Proposition 3:

Φ(x) =

∫ x

a

ϕ =

∫ Pj−1

a

ϕ+

∫ x

Pj−1
ϕ =

∫ Pj−1

a

ϕ+ Cj(x− Pj−1) = const. + Cjx

So ϕ|(Pj−1,Pj) is differentiable with derivative Cj .

Example:

ϕ(x) =

{
2, if 0 ≤ x ≤ 1

−1, if 1 < x ≤ 3

Φ =

∫ x

0

ϕ =

{
2x, if x ≤ 0 ≤ 1

2(1− 0) + (−1)(x− 1) = 3− x, if 1 < x ≤ 3

1. Φ is differentiable on [0, 1) ∪ (1, 3] with Φ′ = ϕ.

2. Φ is continuous but not differentiable at x = 1.

3. Changing ϕ(1) does not affect 1. and 2.

Definition 3: For f ∈ B[a, b] write ||f ||∞ := supx∈[a,b] |f(x)|, called the supremum norm of f .

Example: In B[0, 2π], || sin ||∞ = 1, || cos ||∞ = 1, || sin− cos ||∞ =
√

2

Proposition 6 (bounds for the integral): Let a ≤ b and ϕ ∈ S[a, b] with ∀x ∈ [a, b], m ≤ ϕ(x) ≤M . Then:

m(b− a) ≤
∫ b

a

ϕ ≤M(b− a), furthermore:

∣∣∣∣∣
∫ b

a

ϕ

∣∣∣∣∣ ≤ ||ϕ||∞(b− a)

Proof.

• Take a = P0 < P1 < ... < Pk−1 < Pk = b s.t. ∀j ∈ {1, ..., k}, ∀ ∈ (Pj−1, Pj), ϕ(x) = Cj . Then
m ≤ Cj ≤M and m(Pj − Pj−1) ≤ Cj(Pj − Pj−1) ≤M(Pj , Pj−1). Adding these inequalities gives:

m(b− a) ≤
∫ b

a

ϕ ≤M(b− a)

• Since ∀x ∈ [a, b], −‖ϕ‖∞ ≤ ϕ(x) ≤ ‖ϕ‖∞ we have |
∫ b
a
ϕ| ≤ ‖ϕ‖∞(b− a)

Note: If v ≤ w, it is sometimes useful to define
∫ v
w
ϕ = −

∫ w
v
ϕ but |

∫ b
a
ϕ| ≤ ‖ϕ‖∞(b− a) requires a ≤ b.
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2 THE INTEGRAL FOR REGULATED FUNCTIONS

2 The Integral for Regulated Functions

Definition 4:

1. A function f : [a, b]→ R is regulated if ∀ε > 0, ∃ϕ ∈ S[a, b] s.t. ‖ϕ− f‖∞ < ε

2. Equivaletly, f is regulated if ∃ a sequence (ϕn)∞n=1 in S[a, b] s.t. ‖ϕn − f‖∞ → 0 as n→∞.

ε
ε

a b

Proposition 7: Fix a ≤ b ∈ R. The set of regulated functions [a, b]→ R forms a vector subspace R[a, b] of
W and S[a, b] ⊂ R[a, b] ⊂ B[a, b].

Proof.

• Let f, g ∈ R[a, b] and choose sequences (ϕn)∞n=1, (ψn)∞n=1 in S[a, b] s.t. ‖ϕn − f‖∞ → 0 as n → ∞.
Then (λϕn + µψn)∞n=1 is a sequence in S[a, b] by Proposition 1, and

‖(λϕn + µψn)− (λf + µg)‖∞ = sup
x∈[a,b]

|(λϕn + µψn)(x)− (λf − µg)(x)|

= sup
x∈[a,b]

|λ(ϕn − f)(x) + µ(ψn − g)(x)|

≤ sup
x∈[a,b]

{|λ| · |(ϕn − f)(x)|+ |µ| · |(ϕn − g)(x)|}

≤ |λ| sup
x∈[a,b]

|(ϕn − f)(x)|+ |µ| sup
x∈[a,b]

|(ϕn − g)(x)|

≤ |λ‖|ϕn − f‖∞ + |µ‖|ψn − g‖∞ → 0 as n→∞

Thus λf + µg ∈ R[a, b]. Clearly S[a, b] ⊂ R[a, b].

• Given f ∈ R[a, b] take ϕ ∈ S[a, b] with ‖ϕ− f‖∞ = 1, so:

−1 ≤ ϕ(x)− f(x) ≤ 1

−‖ϕ‖∞ − 1 ≤ ϕ(x)− 1 ≤ f(x) ≤ ϕ(x) + 1 ≤ ‖ϕ− f‖∞ + 1

Hence f ∈ B[a, b].

Proposition 8: If f : [a, b]→ R is continuous then it is regulated.
(Recall that f : [a, b] → R is continuous if it is continuous at each c ∈ [a, b]. It is continuous at c if ∀ε > 0,
∃δc(ε) s.t. x ∈ (c− δc(ε), c+ δc(ε)) ∩ [a, b] =⇒ f(x) ∈ (f(c)− ε, f(c) + ε).

Proof. Choose ε > 0 and put A = {t ∈ [a, b] : ∃ψt ∈ S[a, t] with ‖f |[a,t] − ψt‖∞ < ε}. Now A ⊃ [a, a +
1
2δa(ε)] ∩ [a, b] so A 6= ∅. Also t ∈ A =⇒ [a, t] ⊂ A. Let c := supA. Then c ∈ [a, b]. We want to show that

c = b. Suppose not, i.e. a < c < b. Now [c − 1
2δc(ε), c + 1

2δc(ε)] ∩ [a, b] ⊂ A using ψc− δc2
for [a, c − δc

2 ] and

f(c) on [c− 1
2δc(ε), c+ 1

2δc(ε)] ∩ [a, b] contradicting c = supA.
∴ A = [a, b]
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2 THE INTEGRAL FOR REGULATED FUNCTIONS

Definition 5: For a regulated function f : [a, b]→ R define
∫ b
a
f to be:

lim
n→∞

∫ b

a

ϕn

where (ϕn)∞n=1 is a sequence of step functions that converge uniformly to f on [a, b] in the sense ‖ϕn−f‖∞ → 0
as n→∞. This requires:

Proposition 9: Let f : [a, b] → R be a regulated function and (ϕn)∞n=1 be a sequence of step functions

converging uniformly to f . Then (
∫ b
a
ϕn)∞n=1 converges in R. If (ψn)∞n=1 is also a sequence in S[a, b] that

converges uniformly to f then limn→∞
∫ b
a
ψn = limn→∞

∫ b
a
ϕn.

Proof.

• ∀ε > 0 ∃N(ε) s.t. ∀n ≥ N(ε) ‖ϕn − f‖∞ < ε. If m,n ≥ N(ε) then

‖ϕn − ϕm‖∞ = sup
x∈[a,b]

{|(ϕn(x)− f(x)) + (f(x)− ϕm(x))|}

≤ sup
x∈[a,b]

{|ϕn(x)− f(x)|+ |f(x)− ϕm(x)|}

≤ ‖ϕn − f‖∞ + ‖f − ϕm‖∞ ≤ 2ε

Now: ∣∣∣∣∣
∫ b

a

ϕn −
∫ b

a

ϕm

∣∣∣∣∣ =

∣∣∣∣∣
∫ b

a

(ϕn − ϕm)

∣∣∣∣∣ ≤ (b− a)‖ϕn − ϕm‖∞ (by Proposition 6)

So (
∫ b
a
ϕn)∞n=1 is a Cauchy sequence in R and hence converges.

• ω2k−1 := ϕk, ω2k := ψk (k = 1, 2, ...) gives another sequence of step functions converging uniformly to

f so
(∫ b

a
ωn

)∞
n=1

converges and its subsequences
(∫ b

a
ϕn

)∞
n=1

and
(∫ b

a
ψn

)∞
n=1

converge to its limit.

Let us show that the integral of regulated functions has good properties.

Proposition 10 (additivity): Let a ≤ u ≤ v ≤ w ≤ b and let f : [a, b] → R be a regulated function. Then
f |[u,w] is a regulated function. Moreover: ∫ w

u

f =

∫ v

u

f +

∫ w

v

f

Proof. Choose a sequence of step functions ϕn : [a, b] → R with ‖ϕn − f‖∞ → 0 as n → ∞. ‖ϕ|[u,w] −
f |[u,w]‖∞ ≤ ‖ϕn− f‖∞ so (ϕn|[u,w]) is a sequence of step functions converging uniformly to f |[u,w], which is
therefore regulated. The same applies to [u, v] and [v, w]. Hence:∫ v

u

f +

∫ w

v

f := lim
n→∞

∫ v

u

ϕn + lim
n→∞

∫ w

v

ϕn (by Proposition 9)

= lim
n→∞

(∫ v

u

ϕn +

∫ w

v

ϕn

)
(by Analysis I)

= lim
n→∞

∫ w

u

ϕn (by Proposition 3)

=:

∫ w

u

f

Proposition 11 (linearity): I : R[a, b]→ R, I(f) =
∫ b
a
f is linear.

6



2 THE INTEGRAL FOR REGULATED FUNCTIONS

Proof. For f, g ∈ R[a, b] take sequence (ϕn)∞n=1, (ψn)∞n=1 in S[a, b] converging uniformly to f, g, respectively.
Then (λϕn + µψn)∞n=1 converges uniformly to λf + µg by Proposition 7 and

I(λf + µg) = lim
n→∞

I(λϕn + µψn)

= lim
n→∞

(λI(ϕn) + µI(ψn)) (by Proposition 4)

= λ lim
n→∞

I(ϕn) + µ lim
n→∞

(ψn) (by Analysis I)

= λI(f) + µI(g)

Proposition 12 (bounds): If f ∈ R[a, b] and ∀x ∈ [a, b] m ≤ f(x) ≤M then m(b− a) ≤
∫ b
a
f ≤M(b− a).

Also |
∫ b
a
f | ≤ ‖f‖∞(b− a).

Proof. Let (ϕn)∞n=1 be a sequence in S[a, b] converging uniformly to f .

m

M

a b

ϕn

Get new ϕn by replacing any value of ϕn that are greater than M by M and less than m by m. This

cannot increase ‖ϕn − f‖∞ by Proposition 6 ∀n ∈ N. m(b − a) ≤
∫ b
a
ϕn ≤ M(b − a). Let n → ∞ give

m(b− a) ≤
∫ b
a
f ≤M(b− a). Now use m = −‖f‖∞ and M = ‖f‖∞.

Definition 6: f : A ⊂ R → R is uniformly continuous if ∀ε > 0, ∃δ = δ(ε) > 0 s.t. x, y ∈ A,
|x− y| < δ =⇒ |f(x)− f(y)| < ε. “Uniformly” means consistently on the domain.

Note: Here one δ works for any x, y. This is not the same as continuity where ∀c ∈ A, ∀ε > 0, ∃δ = δc(ε) > 0
s.t. y ∈ A, |y − c| < δc(A) =⇒ |f(y)− f(c)| < ε
But uniformly continuous =⇒ continuous (take ∀c, δc(ε) = δ(ε)).

Example: f : (0, 1) → R, f(x) = 1
x is not uniformly continuous because for ε < 1 any δ satisfies∣∣∣δ − 1

1+ 1
δ

∣∣∣ < δ but
∣∣∣f(δ)− f

(
1

1+ 1
δ

)∣∣∣ = 1 6< ε so no δ satisfies the required property for uniform conti-

nuity.
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2 THE INTEGRAL FOR REGULATED FUNCTIONS

δ1
1+ 1

δ

1
δ

1 + 1
δ

Theorem 13: Suppose f : [a, b]→ R is continuous. Then f is uniformly continuous.

Proof. Suppose, if possible, that f : [a, b] → R is continuous, but not uniformly. Then ∃ε0 s.t. ∀δ > 0,
∃x, y ∈ [a, b] which depend on δ s.t. |x− y| < δ but |f(x)− f(y)| ≥ ε0.

For n = 1, 2, 3, ... consider δ = 1
n . Then ∃xn, yn ∈ [a, b] s.t. |xn − yn| < 1

n and |f(xn) − f(yn)| ≥ ε0. The
sequence (xn)∞n=1 is bounded so by the Bolzano-Weierstrass Theorem has a convergent subsequence (xnk)∞k=1

say, and xnk → u, say, as k →∞. Note that u ∈ [a, b]. Since |xnk − ynk | < 1
nk
→ 0 as k →∞, we also have

ynk → u as k →∞.

Now f is continuous so by equivalent definition of continuity f(xnk) → f(u) as k → ∞ and f(ynk) → f(u)
as k →∞. Which contradicts ∀δ, |f(xnk)− f(ynk)| ≥ ε0 > 0

Question: where does this proof break down in the last example?

Example: (0, 1)→ R, x 7→
√
x is uniformly continuous because it is g|(0,1) where g : [0, 1]→ R : g(x) =

√
x

is uniformly continuous.

Corollary 14: Let f : [a, b] → R be continuous and ε > 0. Then ∃ϕ ∈ S[a, b] with ‖ϕ− f‖∞ ≤ ε. Thus f
is regulated as in Proposition 8.

Proof. By Theorem 13 f is uniformly continuous. Take δ = δ(ε) > 0 s.t. x, y ∈ [a, b], |x − y| < δ =⇒
|f(x)− f(y)| < ε.

Take k with (b−a)
k < δ and put Pj = a + (b−a)j

k , 0 ≤ j ≤ k. Put ϕ(Pj) = f(Pj) and ∀x ∈ (Pj−1, Pj),
ϕ(x) := f(Pj), then ∀x ∈ [a, b], ∃j ∈ {0, ..., k} s.t. x ∈ (Pj−1, Pj ] and then |ϕ(x)−f(x)| = |f(Pj)−f(x)| < ε
because |Pj − x| < δ so ‖ϕ− f‖∞ = supx∈[a,b] |ϕ(x)− f(x)| ≤ ε

8



3 THE INDEFINITE INTEGRAL AND THE FUNDAMENTAL THEOREM OF CALCULUS

3 The Indefinite Integral and the Fundamental Theorem of Cal-
culus

Definition 7: Let f : [a, b]→ R be regulated. Define the indefinite integral F : [a, b]→ R by:

F (x) :=

∫ x

a

f

Note that F (a) = 0.

Proposition 15: The indefinite integral F : [a, b] → R of f ∈ R[a, b], F (x) :=
∫ x
a
f , satisfies ∀x, y ∈ [a, b],

|F (y)− F (x)| ≤ ‖f‖∞|y − x| and is uniformly continuous.

Remark: Say F is Lipschitz with Lipschitz constant L if it increases distance by no more than a constant
factor L. Here L = ‖f‖∞.

Note: [0, 1]→ R : x 7→
√
x is not Lipschitz.

Proof.

|F (y)− F (x)| =
∣∣∣∣∫ y

a

f −
∫ x

a

f

∣∣∣∣
=

∣∣∣∣∫ y

x

f

∣∣∣∣ (by Proposition 12)

≤ ‖f‖∞|y − x|

If f = 0 then F is constant so is uniformly continuous. Otherwise ‖f‖∞ > 0 and given ε > 0 put δ > ε
2‖f‖∞ .

Then ∀x, y ∈ [a, b], |x− y| < δ =⇒ |F (x)− F (y)| ≤ ε
2 < ε, so F is uniformly continuous.

Theorem 16: Let f ∈ R[a, b] and suppose f is continuous at c ∈ [a, b]. Then the indefinite integral
F : [a, b]→ R is differentiable at c and F ′(c) = f(c).

Proof. ∀ε > 0 ∃δ(ε) s.t. x ∈ (c− δ, c+ δ) ∩ [a, b] =⇒ f(c)− ε < f(x) < f(c) + ε. Thus:

0 < h < δ =⇒ (f(c)− ε)h

≤
∫ c+h

c

f

= F (c+ h)− F (c)

≤ (f(c) + ε)h (by Proposition 12)

=⇒
∣∣∣∣F (c+ h)− F (c)

h
− f(c)

∣∣∣∣
≤ ε

Corollary 17 (first form of the FTC): Suppose f : [a, b]→ R is continuous. Then:

1. There exists a differentiable function g : [a, b]→ R with g′ = f (i.e. g is an antiderivative of f).

2. If h : [a, b]→ R is differentiable with h′ = f then ∃k ∈ R s.t. ∀x ∈ [a, b], h(x) =
∫ x
a
f + k

Proof.

1. g(x) =
∫ x
a
f will do by Theorem 16.

2. (h− g)′ = 0 so h− g is a constant funtion (by MVT, see Analysis II).
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3 THE INDEFINITE INTEGRAL AND THE FUNDAMENTAL THEOREM OF CALCULUS

Note: g differentiable 6=⇒ g′ is continuous.

Example: g(0) = 0, g(x) = x2 sin 1
x , (x 6= 0), g′(x) = 2x sin 1

x − cos 1
x (x 6= 0)

g′(0) = lim
x→0

g(x)− g(0)

x− 0
= lim
x→0

x sin
1

x
= 0

Theorem 18 (second form of the FTC): Let f : [a, b]→ R be regulated and suppose there exists a differen-

tiable function g : [a, b]→ R s.t. g′ = f . Then
∫ b
a
f = g(b)− g(a). This means an integral is found in terms

of an antiderivative.

Note:

1. If f is continuous this follows from Corollary 17.

2. Putting x for b in Theorem 18 gives F (x) :=
∫ x
a
f = g(x) − g(a) and F is differentiable since we

assumed f is. For regulated f (e.g. a step function) F need not be differentiable.

Proof. Fix ε > 0 and choose ϕ ∈ S[a, b] with ‖ϕ − f‖∞ ≤ ε. Take partition a = P0 < P1 < ... < Pk−1 <
Pk = b with ∀j ∈ {1, ..., k},∀x ∈ (Pj−1, Pj), ϕ(x) = cj . The MVT for g|[Pj−1,Pj ] gives xj ∈ (Pj−1, Pj) with
g(Pj)− g(Pj−1) = g′(xj)(Pj − Pj−1) = f(xj)(Pj − Pj−1)
‖ϕ− f‖∞ gives cj − ε ≤ f(xj) ≤ cj + ε
Add (cj − ε)(Pj − Pj−1) ≤ g(Pj)− g(Pj−1) ≤ (cj + ε)(Pj − Pj−1) for 1 ≤ j ≤ k to get∫ b

a

ϕ− ε(b− a) (∗)

Now ∣∣∣∣∣
∫ b

a

ϕ−
∫ b

a

f

∣∣∣∣∣ =

∣∣∣∣∣
∫ b

a

(ϕ− f)

∣∣∣∣∣
≤ ‖ϕ− f‖∞(b− a) (by Proposition 12)

≤ ε(b− a) (∗∗)

So |g(b)− g(a)−
∫ b
a
f | = 0 as required.

Note: If f is given by f(x) = cos 2x, say, then
∫ b
a
f may be written as

∫ b
a
f(t) dt or

∫ b
a

cos 2s ds.

Example: ∀n ∈ N, fn(x) := xn; gn(x) := xn+1

n+1 satisfies g′n = fn on R. If a < b in R then fn|[a,b] is

differentiable so is continuous so is regulated, and Theorem 18 gives
∫ b
a
fn = gn(b) − gn(a) and one might

write
∫ b
a
fn =

∫ b
a
xn dx =

[
xn+1

n+1

]b
a

:= bn+1

n+1 −
an+1

n+1 = g(b)− g(a)

Corollary 19 (integration by parts): If F,G := [a, b] → R are differentiable and F ′ =: f , G′ =: g are

regulated then
∫ b
a
Fg = F (b)G(b)− F (a)G(a)−

∫ b
a
fG. To prove this we need the following proposition:

Proposition 20: f, g ∈ R[a, b] =⇒ fg ∈ R[a, b]

Proof of Proposition 20. ∀ε > 0 take ϕ,ψ ∈ S[a, b] s.t. ‖ϕ− f‖∞ < ε1, ‖ψ − g‖∞ < ε2 for some ε1, ε2, and
ϕψ ∈ S[a, b] (by question 1.8)

‖fg − ϕψ‖∞ ≤ ‖fg − fψ‖∞ + ‖fψ − ϕψ‖∞
≤ ‖f‖∞‖g − ψ‖∞ + ‖f − ϕ‖∞‖ψ‖∞
< ‖f‖∞ε2 + ε1(‖ψ‖∞)

≤ ε

2
+
ε

2
= ε

10



3 THE INDEFINITE INTEGRAL AND THE FUNDAMENTAL THEOREM OF CALCULUS

This works if ε1 = ε
2(‖g‖∞+1) and ε2 = min{ ε

2‖f‖∞ , 1}

Proof of Corollary 19. H := FG is differentiable (by Analysis II) with H ′ = fG + Fg. By Proposition 7

and 20 H ′ ∈ R[a, b]. Hence by Theorem 18, F (b)G(b)− F (a)G(a) =
∫ b
a
fG+

∫ b
a
Fg.

Corollary 21 (integration by substitution): Suppose f ∈ C[a, b], g differentiable with g′ continuous and g
maps [c, d] into [a, b]. Then ∫ d

c

(f ◦ g)g′ =

∫ g(d)

g(c)

f (†)

or ∫ d

c

(f ◦ g)g′ =

∫ d

c

f(g(t))g′(t)dt

Proof. Let F : [a, b]→ R s.t. F (x) :=
∫ x
a
f be differentiable by Corollary 15 (FTC 1). Let h : [c, d]→ R s.t.

h := F ◦ g. Then h is differentiable with h′ = (F ′ ◦ g)g′ (by the chain rule, Analysis II). By Theorem 18,∫ d
c

(F ′ ◦ g)g′ =
∫ d
c
h′ = h(d)− h(c) = F (g(d))− F (g(c)), and the RHS of (†) = F (g(d))− F (g(c)).

Example:
∫ π

2

0
cos3 x sinx dx

f(t) = t3

g(t) = cos t

g′(t) = − sin t

∴
∫ π

2

0
cos3 x sinx dx = −

∫ cos π2
cos 0

u3 du =
∫ 1

0
u3 du = 1

4

Theorem 22: If f : [a, b]→ R is regulated, then:

n∑
j=1

b− a
n

f

(
a+ j

b− a
n

)
→
∫ b

a

f(x) dx as n→∞

a b

Proof. We first prove it for step functions, then we extend it to general regulated functions.
Let ϕ ∈ S[a, b], ϕ is constant except for k − 1 discontinuities. Then:∣∣∣∣∣∣

n∑
j=1

b− a
n

ϕ

(
a+ j

b− a
n

)
−
∫ b

a

ϕ

∣∣∣∣∣∣ ≤ (k − 1)
b− a
n
‖ϕ‖∞

11



3 THE INDEFINITE INTEGRAL AND THE FUNDAMENTAL THEOREM OF CALCULUS

a b

should be included, but isn’t

shouldn’t be included, but is

Then:

lim
n→∞

n∑
j=1

b− a
n

ϕ

(
a+ j

b− a
n

)
=

∫ b

a

ϕ, ∀ϕ ∈ S[a, b]

We now extend it to regulated functions.
Let f be regulated, i.e. ∀ε > 0, ∃ϕ ∈ S[a, b] s.t. ‖f − ϕ‖∞ ≤ ε and

∣∣∫ f − ∫ ϕ∣∣ ≤ ε(b− a).∣∣∣∣∣∣
n∑
j=1

b− a
n

f

(
a+ j

b− a
n

)
−

n∑
j=1

b− a
n

ϕ

(
a+ j

b− a
n

)∣∣∣∣∣∣ ≤
n∑
j=1

b− a
n
|f()− ϕ()|

≤ ε(b− a)

Then:∣∣∣∣∣∣
n∑
j=1

b− a
n

f

(
a+ j

b− a
a

)
−
∫ b

a

f

∣∣∣∣∣∣ ≤
∣∣∣∣∣∣
n∑
j=1

b− a
n

f()−
n∑
j=1

b− a
n

ϕ()

∣∣∣∣∣∣+

∣∣∣∣∣∣
n∑
j=1

b− a
n

ϕ()−
∫
ϕ

∣∣∣∣∣∣+

∣∣∣∣∫ ϕ−
∫
f

∣∣∣∣
≤ 2ε(b− a) + (k − 1)

b− a
n
‖ϕ‖∞

This is small if ε is small, then n large.

12



4 (I DON’T KNOW THAT THIS CHAPTER’S CALLED)

4 (I don’t know that this chapter’s called)

How do we recognise a regulated function? For instance, are the following functions regulated?

1. f(x) = |x| on [−1, 1]

2. f(x) =

{
1
x if x ∈ (0, 1]

0 if x = 0

3. f(x) = sin 1
x

4. f(x) = x sin 1
x

We start by defining the following limits:

1. f(x−) := limt↘0 f(x− t) if the limit exists.

2. f(x+) := limt↘0 f(x+ t) if the limit exists.

Proposition 23: f : [a, b] → R is regulated iff ∀x ∈ (a, b), f(x−) and f(x+) exist, as well as f(a+) and
f(b−).

Proof.

=⇒ : Let f ∈ R[a, b] and x ∈ (a, b). We show that ∀ε > 0, we have:

lim sup
t↘0

f(x+ t)− lim inf
t↘0

f(x+ t) ≤ ε

Then lim sup = lim inf and the limit t↘ 0 of f(x+ t) exists.

∀ε > 0, ∃ϕN s.t. ‖f − ϕN‖∞ < ε
2

There exists interval (x, δ) where ϕN is constant so that |f(y) − f(z)| < ε ∀y, z ∈ (x, δ). Then
lim sup− lim inf ≤ ε.

⇐=: Adapt the proof of Proposition 8 (C[a, b] ⊂ R[a, b]). That is, introduce ∀ε > 0:

A = {t ∈ [a, b] : ∃ψ ∈ S[a, b] s.t. ‖f |[a,t] − ψ‖∞ < ε}

A 6= ∅ because f(a+) exists. Let c = supA. If c < b, construct a step function that approximates f
beyond c. Then c cannot be smaller than b.

Examples:

1. Piecewise continuous functions: f is piecewise continuous if there exists a partition a = P0 < P1 <
P2 < ... < Pk = b, such that f is continuous on each interval (Pj−1, Pj), and f(Pj+), f(Pj−) exist.

a b

13



4 (I DON’T KNOW THAT THIS CHAPTER’S CALLED)

2. Monotone functions: note that f is:
non-decreasing if f(x) ≤ f(y) ∀x ≤ y

increasing if f(x) < f(y) ∀x < y
non-increasing if f(x) ≥ f(y) ∀x ≤ y

decreasing if f(x) > f(y) ∀x < y

a b

3. Devil’s Staircase: see chapter 7.

We have defined
∫ b
a
f for f ∈ R[a, b] where −∞ < a < b <∞ and such that f is bounded. Here, we extend

the definition to a = −∞ or b =∞, or f unbounded.

Example:

1. f(x) = 1
x in (0, 1]

2. f(x) = 1√
x

in (0, 1]∫ 1

0
1√
x
dx = limε↘0

∫ 1

ε
1√
x
dx = limε↘0 2x

1
2

∣∣∣1
ε

= limε↘0 2− 2
√
ε = 2

3.
∫∞
1

1
x2 dx = limN→∞

∫ N
1

dx
x2 = limN→∞− 1

x

∣∣N
1

= limN→∞− 1
N + 1 = 1

Note:

1. If f : (a, b]→ R is regulated on [t, b] ∀t ∈ (a, b], and
∫ b
t
f → L as t→ a+, then we say that

∫ b
a
f exists,

and it is equal to L.

2. If f : [a,∞) → R is regulated on [a,N ] ∀N > a and
∫ N
a
f → L as N → ∞, then we say that

∫∞
a
f

exists and is equal to L.

Remark:
∫∞
−∞ f exists if both limits

∫ c
−∞ f and

∫∞
c
f exist for some c ∈ R.

Let:

U(f) = inf

{∫ b

a

ϕ : ϕ ∈ S[a, b], ϕ ≥ f

}

L(f) = sup

{∫ b

a

ϕ : ϕ ∈ S[a, b], ϕ ≤ f

}

We say that f is Riemann integrable if U(f) = L(f), in which case we define
∫ b
a
f = U(f) = L(f).

Note: If f ∈ R[a, b], then f is Riemann integrable. Why? Take ϕ s.t. ‖f−ϕ‖∞ ≤ ε so that ϕ−ε ≤ f ≤ ϕ+ε

and
∣∣∣∫ ba (ϕ+ ε)−

∫ b
a

(ϕ− ε)
∣∣∣ ≤ 2ε(b− a).

Examples:

14
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1. Non-regulated but Riemann integrable:

f(x) =

{
1 if x = 1, 12 ,

1
4 , ...

0 otherwise

1

1/2 10

f is not regulated because f(0+) does not exist. f is Riemann integrable with
∫ b
a
f = 0. Clear

that L(f) ≥ 0. U(f) ≤
∫ 1

0
ϕn where ϕn =


1 if x ∈ [0, 1

n ]

1 if x = 1, 12 ,
1
4 , ...

0 otherwise

, so then U(f) ≤ 1
n . Then

U(f) ≤ infn
1
n = 0.

2. Not Riemann integrable but Lebesque integrable: In [0, 1]:

f(x) =

{
1 if x ∈ Q
0 if x ∈ R \Q

(
∫ 1

0
f = 0 for Lebesque)

15



5 POINTWISE CONVERGENCE AND ITS DISADVANTAGES

5 Pointwise Convergence and its Disadvantages

Definition 8: Let A ⊂ R and for all n ≥ 1, let fn : A → R. We say that (fn) converges pointwise to f if
∀x ∈ A, ∀ε > 0, there exists N = Nx(ε) such that n ≥ Nx(ε) =⇒ |fn − f(x)| < ε.

Examples:

1. “Odd roots”, fn : [−1, 1]→ R, fn(x) = x
1

2n−1 .

lim
n→∞

x
1

2n−1 = 1 ∀x > 0

Let f(x) =


1 if x ∈ (0, 1]

0 if x = 0

−1 if x ∈ [−1, 0)

∀ fixed x ∈ [−1, 1], we have limn→∞ fn(x) = f(x)

2. “Odd powers”, fn(x) = x2n−1 on [−1, 1].

Let f(x) =

{
1 if x = ±1

0 otherwise∫ b

a

fn(x)→
∫ b

a

f(x) dx ∀(fn)→ f pointwise?

3. fn : [0, 1]→ R

fn(x) =


2n2x if x ∈ [0, 1

2n ]

2n− 2n2x if x ∈ [ 1
2n ,

1
n ]

0 otherwise

∀x ∈ [0, 1] : fn(x)→ 0∫ 1

0

fn(x) dx =
1

2n
n =

1

2
∀n. Then

1

2
lim
n→∞

∫ 1

0

fn(x) 6=
∫ 1

0

f(x) dx = 0

Disadvantages of pointwise convergence:

1. The pointwise limit of a sequence of continuous functions need not be continuous (first and second
examples).

2. The integral of a pointwise limit of a sequence of continuous functions need not be the limit of their
integrals (example 3).
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6 UNIFORM CONVERGENCE: ITS ADVANTAGES FOR INTEGRALS AND CONTINUITY

6 Uniform Convergence: its Advantages for Integrals and Conti-
nuity

Definition 9: Let A ⊂ R. Say a sequence (fn) of functions fn : A→ R converges uniformly to the function
f : A→ R if ∀ε > 0 ∃N = N(ε) s.t. (n ≥ N , x ∈ A) =⇒ |fn(x)− f(x)| < ε. Equivalently, ‖fn − f‖∞ → 0
as n→∞, where ‖ · ‖∞ is the sup norm ‖fn − f‖∞ := supx∈A |fn(x)− f(x)|.
Note: In pointwise convergence, Nx(ε) can depend on x as well as ε, whereas in uniform convergence, the
same N(ε) must work for every x. Uniform convergence implies pointwise convergence (using N(ε) for Nx(ε)
for each x). The three examples in the previous chapter show that pointwise convergence does not imply
uniform convergence.
Say (fn) is uniformly Cauchy if ∀ε > 0:

∃M = M(ε) s.t. (m,n ≥M(ε), x ∈ A) =⇒ |fn(x)− fm(x)| < ε (∗)

In this case ∀x ∈ A, (fn(x)) is a Cauchy sequence in R so has a limit in R, call that f(x), which defines
f : A → R. Let m → ∞ in (∗) to get ∀n ≥ M(ε), ∀x ∈ A, |fn(x)− f(x)| ≤ ε. So (fn) converges uniformly
to f .
Slogan: “uniform convergence makes the integral converge”.

Theorem 24: Suppose fn : [a, b] → R is a sequence of regulated functions and (fn) → f uniformly as

n→∞. Then f : [a, b]→ R is regulated and
(∫ b

a
fn

)
→
∫ b
a
f as n→∞.

Idea: Find fN within ε
2 of f and ϕ ∈ S[a, b] within ε

2 of fN .

Proof. Given ε > 0, choose N = N( ε2 ) s.t. (n ≥ N , x ∈ [a, b]) =⇒ |fn(x)− f(x)| ≤ ε
2 (∗∗)

fN is regulated so choose ϕ ∈ S[a, b] s.t. x ∈ [a, b] =⇒ |ϕ(x) − fN (x)| ≤ ε
2 . Then x ∈ [a, b] =⇒

|ϕ(x)− f(x)| ≤ ε. Hence f is regulated. By (∗∗) and Proposition 11 and 12:

n ≥ N =⇒

∣∣∣∣∣
∫ b

a

fn −
∫ b

a

f

∣∣∣∣∣ =

∣∣∣∣∣
∫ b

a

(fn − f)

∣∣∣∣∣ ≤ ε

2
(b− a)

Hence (
∫ b
a
fn)→

∫ b
a
f as n→∞.

Theorem 25: Let A ⊂ R and let (fn) be a sequence of continuous functions fn : A → R that converges
uniformly to f : A→ R. Then f is continuous.

Proof. (“3ε proof” or “ ε3 proof”)
Fix c ∈ A. Fix any ε > 0 and use the uniform convergence to choose N = N( ε3 ) s.t. n ≥ N( ε3 ), x ∈ A =⇒
|fn(x)− f(x)| ≤ ε

3 . Use continuity of fN at c to give δ > 0 s.t. |x− c| < δ =⇒ |fN (x)− fN (c)| < ε
3 . Then

|x− c| < δ, x ∈ A =⇒ |f(x)− f(c)| ≤ |f(x)− fN (x)|+ |fN (x)− fN (c)|+ |fN (c)− f(c)| < ε
3 + ε

3 + ε
3 = ε.

Hence f is continuous at c. c is any point in A so f is continuous.
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7 Uniform Convergence: Construction of Exotic Examples

The Devil’s Staircase/Cantor function: Let f : [0, 1] → R, n = 0, 1, 2, ... be piecewise linear non-decreasing
continuous functions defined recursively by:

f0(x) = x, fn+1(x) =


1
2fn(3x), 0 ≤ x ≤ 1

3
1
2 ,

1
3 ≤ x ≤

2
3

1
2 + 1

2fn(3x− 2), 2
3 ≤ x ≤ 1

, n ≥ 0

1
9

2
9

1
3

2
3

7
9

8
9

1

1
4

1
2

3
4

1

0

So fn(0) = 0, fn(1) = 1 ∀n.
At each n ≥ 1 add 2n−1 flat patches of length ( 1

3 )n slopes of linear bits: ( 3
2 )n.

sup
x∈[0,1]

|fn+1(x)− fn(x)| ≤ sup
x∈[0,1]

|fn(x)− fn−1(x)|, n ≥ 1

So ‖fm − fn‖∞ ≤ ( 1
2 )n‖f1 − f0‖ ≤ 1

2

If n > m, ‖fm − fn‖∞ ≤ ‖fm − fm+1‖∞ + ‖fm+1 − fm+2‖∞ + ...+ ‖fn−1 − fn‖∞

≤ 1

2m+1
+

1

2m+2
+ ...+

1

2n

≤ 1

2m+1

(
1

1− 1
2

)
=

1

2m

So (fn) is uniformly Cauchy so converges uniformly to a continuous function f (the Devil’s Staircase) by
Theorem 25.
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7 UNIFORM CONVERGENCE: CONSTRUCTION OF EXOTIC EXAMPLES

Remark: Let E = ( 1
3 ,

2
3 ) + ( 1

9 ,
2
9 ) + ( 7

9 ,
8
9 ) + ( 1

27 ,
2
27 ) + ...

f is locally constant on each subinterval of E so is differentiable ∀x ∈ E with f ′(x) = 0. Total length of
E : 1

3 + 2
9 + 4

27 + ... = 1
3{1 + 2

3 + 4
9 + ...+ ( 2

3 )n + ...} = 1
3

1
1− 2

3

= 1!

Thus f is continuous, has zero derivative on practically the whole of [0, 1], yet manages to increase from 0

to 1. Clearly f(1)− f(0) = 1 =
∫ 1

0
f ′ fails. f ′ at end points of flat patches?

e.g. at x = 2
3 :

f( 2
3 + h)− f( 2

3 )

h
= 0 if − 1

3
< h < 0 but

f( 2
3 + h)− f( 2

3 )

h
=

1
4
1
9

=
9

4

if h = 1
9 , 27

8 if h = 1
27 , ( 3

2 )n if h = 1
3n . i.e.

lim sup
h↘0

f( 2
3 + h)− f( 2

3 )

h
=∞

is not differentiable at end points.
Let C = [0, 1] \ E (it is a Cantor set)
C is not empty (it contains the end points: 1

3 ,
2
3 ,

1
9 ,

2
9 , ...) but much more: it is the set of point in [0, 1] which

can be expressed in base 3 without the digit 1.
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8 UNIFORM CONVERGENCE AND INTEGRATION

8 Uniform Convergence and Integration

Some results for functions of two variables:
Let D = [a, b] × [c, d] ⊂ R2 and f : D → R be continuous. Recall continuity at (x0, t0) ⊂ D means ∀ε > 0
∃δ > 0 s.t. (|x − x0| < δ, |t − t0| < δ, (x, t) ∈ D) =⇒ |f(x, t) − f(x0, t0)| < ε – continuous on D means
continuous at all points of D.

Definition 10: f : D → R is uniformly continuous if ∀ε > 0 ∃δ > 0 s.t. (|x− y| < δ, |t− s| < δ, x, y ∈ [a, b],
t, s ∈ [c, d]) =⇒ |f(x, t) − f(y, s)| < ε. In particular |f(x, t) − f(x, s)| < ε (put y = x) i.e. f(·, t) → f(·, s)
uniformly as t→ s. Hence by Theorem 24,

∫ b
a
f(x, t) dx→

∫ b
a
f(x, s) dx as t→ s (i.e lim

∫
=
∫

lim).

Recall: fn → f uniformly, (
∫
fn)→

∫
f as n→∞

Lemma 26: f : D → R continuous implies f is uniformly continuous (see Theorem 13).

Proof. Repeat proof of Theorem 13 in 1 dimension (exercise).

Note: Given ((xn, tn)) ∈ [a, b]× [c, d]:

1. ∃ subsequence ((xnk , tnk)) s.t. xnk → x∗ as k →∞

2. ∃ subsequence ((xnkj , tnkj )) s.t. tnkj → t∗ as j →∞

Proposition 27 (differentiation under the integral): Let f , ∂f∂t be continuous for (x, t) ∈ [a, b]× (c, d) where

c, d may be finite or ∞. Then the functions F,G defined by F (t) =
∫ b
a
f(x, t) dx, G(t) =

∫ b
a
∂f
∂t (x, t) dx exist

on (c, d) and F is differentiable with F ′ = G.

Proof. The integrals exist for t ∈ (c, d) since f and ∂f
∂t be continuous w.r.t. x. Given t ∈ (c, d) choose

bounded and closed [c1, d1] ⊂ (c, d) with c1 < t < d1. Now f and ∂f
∂t are continuous on D1 := [a, b]× [c1, d1]

hence uniformly continuous there. Hence given ε > 0 ∃δ > 0 s.t. (|x − y| < δ, |t − s| < δ, x, y ∈ [a, b],

t, s ∈ [c1, d1]) =⇒
∣∣∣∂fdt (x, t)− ∂f

∂t (y, s)
∣∣∣ < ε. Then for h 6= 0 and t+ h ∈ [c1, d1] we have:

∣∣∣∣F (t+ h)− F (t)

h
−G(t)

∣∣∣∣ =

∣∣∣∣∣
∫ b

a

[
f(x, t+ h)− f(x, t)

h
− ∂f

∂t
(x, t)

]
dx

∣∣∣∣∣ =

∣∣∣∣∣
∫ b

a

[
∂f

∂t
(x, z)− ∂f

∂t
(x, t)

]
dx

∣∣∣∣∣
Using MVT: f(x, t+ h)− f(x, t) = h∂f∂t (x, z) where z is between t and t+ h.

Hence if |h| < δ,
∣∣∣F (t+h)−F (t)

h −G(t)
∣∣∣ ≤ |b− a|ε. ∴ F is differentiable and:

d

dt

∫ b

a

f(x, t) dx =

∫ b

a

∂f

∂t
(x, t) dx

Theorem 28 (Fubini/swap order of integration): Let h be continuous on D = [a, b]× [c, d]. Then:∫ b

a

(∫ d

c

h(x, y)dy

)
dx =

∫ d

c

(∫ b

a

h(x, y) dx

)
dy

Proof. Set:

H(t) =

∫ t

a

(∫ d

c

h(x, y)dy

)
dx−

∫ d

c

(∫ t

a

h(x, y) dx

)
dy
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8 UNIFORM CONVERGENCE AND INTEGRATION

H(a) = 0 and:

dH

dt
(t) =

∫ d

c

h(t, y)dy −
∫ d

c

∂

∂t

(∫ t

a

h(x, y) dx

)
dy (by the FTC and Proposition 27, respectively)

=

∫ d

c

h(t, y)dy −
∫ d

c

h(t, y)dy

= 0 (∀t ∈ [a, b])

∴ H(t) = 0 ∀t ∈ [a, b], in particular for t = b as required.
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9 UNIFORM CONVERGENCE: ITS ADVANTAGES FOR DIFFERENTIABILITY

9 Uniform Convergence: its Advantages for Differentiability

Example: fn, f : R → R, fn(x) = 1
n sin (nx), f = 0. Then ‖fn − f‖∞ = 1

n (since ‖ sin ‖∞ = 1) so fn → f
uniformly as n→∞. Each fn is differentiable and f ′n(x) = cosnx so f ′n(0)→ 1 as n→∞ but f ′n(x) does not
converge if x 6= 2πm e.g. (f ′n(π)) = ((−1)n). Although: f ′ is differentiable (f ′ = 0), we do not have f ′n → f ′:

1

1/2
1/3

−1/3
−1/2

−1

π−π

Example: fn, f : R→ R, fn(x) =
√
x2 + 1

n . f(x) = |x|, fn is differentiable with:

f ′n(x) =
x√

x2 + 1
n

→


−1 if x < 0

0 if x = 0

+1 if x > 0

, ∀x ∈ R

|fn(x)− f(x)| ≤ |fn(0)− f(0)| = 1√
n
→ 0 as n→∞ so fn converges uniformly to f but is not differentiable.

|x|
f2

f1

Theorem 29: Let (fn) be a sequence of C1 functions [a, b] → R that converge pointwise to some function
f : [a, b]→ R. Suppose that (f ′n) converges uniformly to a function g. Then f is C1 and f ′ = g.

Proof. Fix x ∈ [a, b]. Since (f ′n) converges uniformly to g, g is continuous by Theorem 25 and Theorem 24
implies: (∫ x

a

f ′n

)
→
∫ x

a

g as n→∞

Now
∫ x
a
f ′n = fn(x)−fn(a) by FTC 2 (Theorem 18) and fn(x)−fn(a)→ f(x)−f(a) by pointwise convergence.

Thus ∀x ∈ [a, b], f(x)− f(a) =
∫ x
a
g. Then FTC 1 (Corollary 15, swap f and g) =⇒ f is differentiable on

[a, b] with derivative g. Since g is continuous, f is C1.

In the example above, Theorem 29 =⇒ (f ′n) cannot converge uniformly (check this directly!).
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9 UNIFORM CONVERGENCE: ITS ADVANTAGES FOR DIFFERENTIABILITY

Theorem 30 (the Weierstrass M-test for uniform convergence): Let fk : A→ R be functions. Suppose there
are constants Mk > 0 such that ∀x ∈ A |fk(x)| ≤ Mk and

∑∞
k=1Mk converges. Then (

∑n
k=1 fk) converges

uniformly (to some function f : A→ R).

Proof. tn :=
∑n
k=1Mk converges as n → ∞ so (tn) is a Cauchy sequence in R and ∀ε > 0 ∃N(ε) such

that m ≥ n ≥ N(ε) =⇒ |tm − tn| < ε. We show (sn) is uniformly Cauchy, hence converges uniformly.
For m > n in N, |sm(x) − sn(x)| = |

∑m
k=n+1 fk(x)| ≤

∑m
k=n+1 |fk(x)| ≤

∑m
k=n+1Mk = |tm − tn| < ε if

m ≥ n ≥ N(ε).

Corollary 30: If the series
∑∞
k=0 ‖fk‖∞ <∞ then (

∑
k=1 fk) converges uniformly as n→∞.

Proof. Take Mk = ‖fk‖∞ for each k in Theorem 30.

Theorem 31: If the series
∑∞
k=0 |ak| and

∑∞
k=1 |bk| converge then the Fourier series a0

2 +
∑∞
k=1(ak cos kx+

bk sin kx) converges uniformly. The limit function, f : R → R is continuous and ∀x ∈ R, f(x + 2π) = f(x).
Also, ∫ π

−π
f(x) cos kx dx = πak (∀k ≥ 0) and

∫ π

−π
f(x) sin kx dx = πbk (∀k ≥ 1)

Proof. ∀x ∈ R, |ak cos kx+ bk sin kx| ≤ |ak|+ |bk| =: Mk

By Theorem 30, sn(x) := a0
2 +

∑n
k=1(ak cos kx+ bk sin kx) converges uniformly, to some function f : R→ R,

which by Theorem 25 is continuous. Since ∀x ∈ R, sn(x+ 2π) = sn(x) we have f(x+ 2π) = f(x)

Recall: ∫ π

−π
cos2 kx dx = π =

∫ π

−π
sin2 kx dx ∀k ≥ 1∫ π

−π
cos kx cos lx dx = 0 =

∫ π

−π
sin kx sin lx dx if k 6= l∫ π

−π
cos kx sin lx dx = 0 ∀k, l

Hence if n ≥ k then
∫ π
−π sn(x) cos kx dx = akπ (∀k ≥ 0)

(∫ π
−π

a0
2 dx = a0π

)
and

∫ π
−π sn(x) sin kx = bkπ

(∀k ≥ 1).
So Theorem 24’,

∫ π
−π f(x) cos kx dx = akπ (∀k ≥ 0),

∫ π
−π f(x) sin kx dx = bkπ (∀k ≥ 1)

Examples:

1. f : R→ R defined by f(x) = |x| for |x| ≤ π and ∀x ∈ R, f(x) = f(x+ 2π).

−2π −π 0 π 2π

π

23



9 UNIFORM CONVERGENCE: ITS ADVANTAGES FOR DIFFERENTIABILITY

a0 =
1

π

∫ π

−π
|x| dx =

2

π

∫ π

0

x dx

= π

ak =
1

π

∫ π

−π
|x| cos kx dx =

2

π

∫ π

0

x cos kx dx =
2

π

[
x sin kx

k

]π
0

− 2

π

∫ π

0

sin kx

k
dx =

2

πk2
[cos kx]

π
0 =

−2

πk2
(1− (−1))

= − 4

πk2

bk =
1

π

∫ π

−π
|x| sin kx dx

= 0

∞∑
k=1

|ak| =
∣∣∣∣− 4

π

∣∣∣∣ ∞∑
j=0

1

(2j + 1)2
<∞

so:
π

2
− 4

π

∞∑
j=0

cos (2j + 1)x

(2j + 1)2

converges uniformly to |x| on [−π, π].

2. f(x) = x, −π ≤ x < π and f(x) = f(x+ 2π).

ak =
1

π

∫ π

−π
x cos kx dx

= 0

bk =
1

π

∫ π

−π
x sin kx dx

= −2

k
(−1)k

Now:
∞∑
k=1

|bk| = 2

∞∑
k=1

1

k

diverges so the Fourier series does not converge uniformly but converges pointwise.

Theorem 32 (the Riemann zeta function): the series
∑∞
k=1

1
kx converges pointwise for x > 1 and ζ :

(1,∞)→ R, ζ(x) :=
∑∞
k=1

1
kx is continuous.

Proof. Fix a > 1. ∀n ∈ N,

n∑
k=2

1

ka
<

∫ n

1

1

ta
dt =

[
t1−a

1− a

]n
1

→ 1

a− 1
as n→∞

If Mk = 1
ka then

∑∞
k=1Mk converges and ∀x ∈ [a,∞), 1

kx ≤ Mk so by Weierstrass M-test (Theorem 30),∑∞
k=1

1
kx converges uniformly on [a,∞). By Theorem 25’ its limit ζ is continuous on [a,∞). This holds

∀a > 1. So ζ : (1,∞) is continuous.

Note:

1. On (1,∞) it is not true that
∑∞
k=1

1
kx converges uniformly because as x→ 1

|s2n(x)− sn(x)| =
2n∑

k=n+1

1

kx
→

2n∑
k=n+1

1

k
>

n

2n
=

1

2

so it is false that ∀x ∈ (1,∞).
∑2n
k=n+1

1
kx <

1
4 , say. So not uniformly Cauchy, therefore not uniformly

convergent.
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9 UNIFORM CONVERGENCE: ITS ADVANTAGES FOR DIFFERENTIABILITY

2.
d

dx

1

kx
= − log k

1

kx
and

∞∑
k=2

log k
1

ka
<∞ for a > 1.

So Theorem 24’ gives ζ is C1 on [a,∞) hence on (0, 1). In fact ζ is C∞.

Theorem 33 (a nowhere differentiable curve): There exists a continuous function f : R → R with the
property that ∀x ∈ R, f is not differentiable at x.

Proof. Define g : R→ R by |x| for x ∈ [−1, 1] and ∀x ∈ R, g(x+ 2) = g(x)
Note that

|g(x)| ≤ 1 ∀x ∈ R
|g(x)− g(y)| ≤ |x− y| ∀x, y

So g is (uniformly) continuous (put δ = ε)
∀k ∈ Z+ let fk : R→ R, fk(x) = (3

4 )kg(4kx) and define f : R→ R by f(x) =
∑∞
k=0 fk(x)

∀x ∈ R, |fk(x)| ≤ ( 3
4 )k =: Mk and Mk converges to 1

1− 3
4

= 4.

Thus by Weierstrass M-test (Theorem 30) the series converges uniformly so f is continuous.
Fix x ∈ R and m ∈ N. Put hm = ± 1

24−m where the sign is chosen so that there are no integers in the open
interval of length 1

2 from 4mx to 4m(x+ hm). Let:

γk :=
fk(x+ hm)− fk(x)

hm
=

(
3

4

)k(g(4k(x± 1
24−m))− g(4kx)

± 1
24−m

)

If k > m then 4
2

k−m
is an integer so γk = 0 by periodicity. For 0 ≤ k ≤ m gives |γk| ≤ 3k. Now |γm| = 3m

so we have:∣∣∣∣f(x+ hm)− f(x)

hm

∣∣∣∣ =

∣∣∣∣∣
∞∑
k=0

γk

∣∣∣∣∣ =

∣∣∣∣∣
m∑
k=0

γk

∣∣∣∣∣ =

∣∣∣∣∣3m +

m−1∑
k=0

γk

∣∣∣∣∣ ≥ 3m −
m−1∑
k=0

3k =
1

2
(3m + 1) as m→∞, hm → 0
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10 SERIES OF FUNCTIONS

10 Series of Functions

Many useful functions can only be defined by approximations by elementary functions. A power series is
a limit of polynomials (needed for exp, sin, cos,...). A Fourier series is a limit of differentiable functions of
period 2π:

1

2
a0 +

n∑
k=1

(ak cos kx+ bk sin kx)

Let fk : A → R (k = 1, 2, ...) be functions. Form the partial sums sn : A → R, sn(x) =
∑n
k=1 fk(x). Say

the series
∑
k fk converges uniformly (or pointwise) to a function f : A→ R if (sn) converges uniformly (or

pointwise) to f . We get immediately:

Theorem 24’: If A = [a, b], ∀k ∈ N fk is regulated and (sn)→ f uniformly then f is regulated and:(
n∑
k=1

∫ b

a

fk

)
→
∫ b

a

f as n→∞

Proof. Use Proposition 11 (linearity of I) and Theorem 24.

Theorem 25’: If ∀k ∈ N fk : A→ R is continuous and (sn)→ f uniformly then f : A→ R is continuous.

Proof. Use
∑n
k=1 continuous functions and Theorem 25

Theorem 29’: If A = [a, b] ∀k ∈ N, fk is C1, (sn) → f pointwise and (s′n) converges uniformly to some
g : [a, b]→ R then f is C1 and f ′ = g.

Proof. Use (
∑n

fk)
′

=
∑n

1 f
′
k and Theorem 29.
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11 NORMED VECTOR SPACES

11 Normed Vector Spaces

Definition 11: Let V be a real vector space. A norm on V is a function V → R, written v 7→ ‖v‖, satisfying:

(i) ∀v ∈ V , ‖v‖ ≥ 0; ‖v‖ = 0⇔ v = 0V

(ii) ∀λ ∈ R, ∀v ∈ V , ‖λv‖ = |λ|‖v‖

(iii) ∀v, v′ ∈ V , ‖v + v′‖ ≤ ‖v‖+ ‖v′‖ (triangle inequality)

A normed vector space is a pair (V, ‖ · ‖), where ‖ · ‖ is a norm on the vector space V .

Examples:

1. | · | is a norm on R.

2. The sup norm on B[a, b], ‖f‖∞ := supx∈[a,b] |f(x)| is a norm.

Proof. ‖f‖∞ = 0 =⇒ ∀x ∈ [a, b], |f(x)| = 0 =⇒ f = 0
‖f + g‖∞ = supx(|f(x) + g(x)|) ≤ supx(|f(x)|+ |g(x)|) ≤ supx |f(x)|+ supx |g(x)| = ‖f‖∞ + ‖g‖∞

Proposition 34 (norms on Rn): On Rn = {(x1, x2, ..., xn) : xj ∈ R, 1 ≤ k ≤ n}:

‖x‖1 :=

n∑
j=1

|xj |, ‖x‖2 :=

√√√√ n∑
j=1

|xj |2 and ‖x‖∞ := max
1≤j≤n

|xj | are norms.

Remarks:

1. These are cases p = 1, 2, limp→∞ of ‖x‖p :=
(∑n

j=1 |xj |p
) 1
p

(The proof of (iii) needs Minkowski inequality:
(∑n

j=1 |xj + yj |p
) 1
p ≤

(∑n
j=1 |xj |p

) 1
p

+
(∑n

j=1 |yj |p
) 1
p

)

2. If you think of (x1, x2, ..., xn) as the image of x : (1, 2, ..., n)→ R then ‖x‖∞ corresponds to ‖f‖∞ on
B[a, b].

Proof of Proposition 34. (i), (ii) are easily checked for each norm (exercise). Taking
∑n
j=1 or maxi≤j≤n of

|xj + yj | ≤ |xj |+ |yj | gives (iii) for ‖ · ‖, and ‖ · ‖∞. To show (ii) for ‖ · ‖2, use Cauchy-Schwartz inequality

in Rn:
∑n
j=1 ajbj ≤

(∑n
j=1 a

2
j

) 1
2
(∑n

j=1 b
2
j

) 1
2

Proof of Cauchy-Schwartz inequality. (a1 + λb1)2 + (a2 + λb2)2 + ...+ (an + λbn)2 ≥ 0. So at most one
real root in λ. Thus discriminant ≤ 0, i.e. n∑

j=1

ajbj

2

≤

 n∑
j=1

a2j

 n∑
j=1

b2j


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11 NORMED VECTOR SPACES

‖x + y‖22 =

n∑
j=1

(xj + yj)
2

=

n∑
j=1

xj(xj + yj) +

n∑
j=1

yj(xj + yj)

≤

 n∑
j=1

x2j

 1
2
 n∑
j=1

(xj + yj)
2

 1
2

+

 n∑
j=1

y2i

 1
2
 n∑
j=1

(xj + yj)
2

 1
2

≤ ‖x‖2‖x + y‖2 + ‖y‖2‖x + y‖2, hence ‖x + y‖2 ≤ ‖x‖2 + ‖y‖2

Definition 12: The norms ‖ · ‖a and ‖ · ‖b on a vector space V are called equivalent if ∃K1 > 0, K2 > 0 s.t.
∀v ∈ V :

K1‖v‖a ≤ ‖v‖b ≤ K2‖v‖a

This is clearly an equivalence relation on the set of norms on V ′.

Lemma 35: ∀n ∈ N the norms ‖ · ‖1, ‖ · ‖2 and ‖ · ‖∞ on Rn are equivlent.

Proof. Exercise.

Definition 13: In a normed vector space (V, ‖ · ‖) we say that a sequence (yn)∞n=1 converges to y ∈ V if
‖yn − y‖ → 0 as n → ∞, that is if ∀ε > 0 ∃N = N(ε) ∈ N s.t. n ≥ N =⇒ ‖yn − y‖ < ε. In (V, ‖ · ‖)
the sequence (yn)∞n=1 is said to be Cauchy if ∀ε > 0 ∃M = M(ε) s.t. m ≥ n ≥ M =⇒ ‖ym − yn‖ < ε. If
every Cauchy sequence in (V, ‖ · ‖) converges (to some point in V ) then say (V, ‖ · ‖) is a Banach space. If
A ⊂ V and every Cauchy sequence of elements of A converges in (V, ‖ · ‖) to an element of A, say that A is
complete. So a Banach space is a complete normed vector space.

Note:

1. If (yn)→ y in (V, ‖ · ‖) as n→∞ then (yn) is a Cauchy sequence (use N( ε2 ) for M(ε)).

2. If (yn)→ y and (yn)→ z then ‖y − z‖ ≤ ‖y − yn‖+ ‖yn − z‖ → 0. So ‖y − z‖ = 0 and so y − z = 0V .
Thus y = z (uniqueness of limit).

3. ‖ · ‖∞ is a norm on vector space S[a, b] of step functions but this is not a Banach space because a
regulated function f ∈ R[a, b] \ S[a, b] has a sequence (ϕn)→ f , ‖ϕn − f‖∞ → 0 with f 6∈ S[a, b].

4. (R[a, b], ‖ · ‖∞) is a Banach space by Theorem 24.

5. (R, | · |) is a 1-dimensional Banach space. In this [0, 1] is complete but (0, 1) is not complete ( 1
n → 0 6∈

(0, 1)).

6. If ‖ · ‖a and ‖ · ‖b are equivalent norms of V then (yn)→ y in (V, ‖ · ‖a)⇔ yn → y in (V, ‖ · ‖b). Thus
(V, ‖ · ‖a) is Banach ⇔ (V, ‖ · ‖b) is Banach.

Theorem 36: Any norm ‖ · ‖ on Rn is equivalent to ‖ · ‖∞.

Proof. Let x = (x1, x2, ..., xn) =
∑n
j=1 xjej where {ej : 1 ≤ j ≤ n} is a basis for Rn

‖x‖ =

∥∥∥∥∥∥
n∑
j=1

xjej

∥∥∥∥∥∥ ≤
n∑
j=1

|xj |‖ej‖ ≤
n∑
j=1

‖ej‖‖x‖∞ (∗)
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Let J := inf
{
‖x‖
‖x‖∞ : x ∈ Rn \ {0}

}
= inf {‖x‖ : ‖x‖∞ = 1}

(since (ii): ‖λx‖ = |λ|‖x‖ ∀λ ∈ R so ∀x 6= 0, ‖x‖
‖x‖∞ = ‖λx‖

‖λx‖∞ ) It remains to show that J > 0 so that

J‖x‖∞ ≤ ‖x‖ ∀x 6= 0. Suppose not, i.e. suppose J = 0. Take (xk)∞k=1 ≤ Rn with ‖xk‖∞ = 1 and ‖xn‖ < 1
k .

The cube in Rn has 2n faces and there exists a subsequence of (xk) s.t. all elements have xkj = 1 (or −1)

for some j ∈ {1, ..., n}. Take a subsequence of this subsequence with xk1 → y1 (by Bolzano-Weierstrass
Theorem) then a subsequence of this with xk2 → y2, ..., then a subsequence of this with xkn → yn. So the final
subsequence tends to y = (y1, y2, ..., yn). Now |yj | = 1 or −1 and ‖y‖ > 0. Then 0 < ‖y‖ = ‖y−xk+xk‖ ≤
‖y−xk‖+‖xk‖ ≤

(∑n
j=1 ‖ej‖

)
‖xk−y‖∞+ 1

k (by (∗))= 1
k +

(∑n
j=1 ‖ej‖

) (
max1<j≤n |xkj − yj |

)
→ 0 along

the final subsequence.

Proposition 37: (Rn, ‖ · ‖∞) is a Banach space (and hence so is any (Rn, ‖ · ‖)).

Proof. If (xkj )∞k=1 in Rn is Cauchy then for each 1 ≤ j ≤ n, |xkj − xlj | ≤ max1≤j≤n |xkj − xlj | =: ‖xk − xl‖∞
so (xkj )∞k=1 is Cauchy in (R, | · |) and xkj → aj . Then xk → (a1, a2, ..., an) in (Rn, ‖ · ‖∞).

Proposition 38: Let −∞ < a < b <∞.

1. The following are norms on C[a, b] := {f : [a, b]→ R : f is continuous}:

(a) ‖f‖∞ := maxa≤x≤b |f(x)|

(b) ‖f‖1 :=
∫ b
a
|f(x)| dx

(c) ‖f‖2 :=
√∫ b

a
|f(x)|2 dx

2. (C[a, b], ‖ · ‖∞) is a Banach space. (C[a, b], ‖ · ‖1), (C[a, b], ‖ · ‖2) are not Banach spaces.

3. On C[0, 1], ‖f‖1 ≤ ‖f‖2 ≤ ‖f‖∞ (†)

4. ‖ · ‖∞ and ‖ · ‖1 are not equivalent norms on C[a, b].

Remark: Compare (†) with ‖x‖∞ ≤ ‖x‖2 ≤ ‖x‖1 in Rn.

Proof.

1. (a) Done before.

(b) (i) ‖f‖1 ≥ 0 easy; f = 0 =⇒ ‖f‖1 = 0 easy. To show ‖f‖1 = 0 =⇒ f = 0: suppose
‖f‖1 = 0 and f 6= 0. Then ∃t0 ∈ [a, b] where f(t0) 6= 0. Now f is continuous at t0 so
∃ a neighbourhood [t1, t2] ⊂ [a, b] of t0 s.t. |f(t)| ≥ 1

2 |f(t0)| ∀t ∈ [t1, t2]. Then ‖f‖1 =∫ b
a
|f(t)| dt ≥

∫ t2
t1
|f(t)| dt ≥ (t2 − t1) 1

2 |f(t0)| > 0.

(ii) ‖λf‖1 = |λ|‖f‖1 easy to prove.

(iii) ‖f + g‖1 =
∫ b
a
|f(x) + g(x)| dx ≤

∫ b
a

(|f(x)|+ |g(x)|) dx = ‖f‖1 + ‖g‖1
(c) (i) The same as the one for (b).

(ii) ‖λf‖2 = |λ|‖f‖2 easy to prove.

(iii) ‖f+g‖22 =
∫ b
a

(f+g)2 =
∫ b
a
f(f+g)+

∫ b
a
g(f+g) ≤

(∫ b
a
f2
) 1

2
(∫ b

a
(f + g)2

) 1
2

+
(∫ b

a
g2
) 1

2
(∫ b

a
(f + g)2

) 1
2

by the Cauchy-Schwarz inequality. Using exercise 3B: ‖f + g‖2 ≤ ‖f‖2 + ‖g‖2

2. Every Cauchy sequence converges in (C[a, b], ‖ · ‖∞) because the uniform limit of continuous functions
is continuous (by Theorem 25) and in normed vector spaces a convergent sequence is Cauchy (see the
first note on the previous page). ∴ (C[a, b], ‖ · ‖∞) complete hence Banach.

(C[a, b], ‖·‖1) is not complete, e.g. WLOG [a, b] = [0, 1]. (fk) is Cauchy in (C[0, 1], ‖·‖1) because ∀l > k,∫ 1

0
|fk − fl| = 1

2 ( 1
k −

1
l ) < ε ∀l, k ≥ 1

2ε but (fk) does not converge to a function in C[0, 1] because if f

s.t. fk → f is continuous then ∀t < 1
2 , f(t) = 0 (else if f(t0) 6= 0 for some t0 ∈ [0, 12 ) then there exists
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a neighbourhood [t1, t2] ⊂ [0, 12 ) of t0 where |f(t)| ≥ 1
2 |f(t0)| so

∫ 1

0
|fk − f |dt ≥ (t2 − t1) 1

2 |f(t0)| > 0

∀k > 1
1
2−t0

, so does not tend to zero as k →∞). Same argument shows that f(t) = 1, ∀t > 1
2 . There-

fore f is discontinuous at 1
2 . Therefore (C[0, 1], ‖ · ‖1) is not complete hence not Banach. Exercise:

(C[a, b], ‖ · ‖2) is not complete hence not Banach.

Note: the sequence (fk) above is not Cauchy in (C[0, 1], ‖·‖∞). ‖fk−f1‖ = maxx∈[0,1] |fk(x)−f1(x)| =
1− k

l 6→ 0

3. ‖f‖1 =
∫ b
a
|f | =

∫ b
a
|f | · 1 ≤ (by C-S)

(∫ b
a
f2
) 1

2
(∫ b

a
1
) 1

2 ≤ ‖f‖2
√
b− a so ‖f‖1 ≤

√
b− a‖f2‖. Now∫ b

a
f2 ≤ ‖f2‖∞(b− a) so ‖f‖2 ≤ ‖f‖∞

√
b− a

4. Consider fn : [0, 1]→ R : fn(x) =

{
1− nx, x ∈

[
0, 1

n

]
0, x ∈

(
1
n , 1
]

Take b = 1, a = 0. Then ‖fn‖∞ = 1 ∀n and ‖fn‖1 = 1
2n . So @k s.t. k‖fn‖∞ ≤ ‖fn‖1 ∀n ∈ N. ∴ ‖ · ‖1

and ‖ · ‖∞ are not equivalent in C[a, b].

Definition 14: If (V, ‖ · ‖V ), (W, ‖ · ‖W ) are normed vector spaces then a map f : V → W is said to be
(‖ · ‖V , ‖ · ‖W )-continuous or just continuous at x ∈ V if ∀ε > 0 ∃δ = δx(ε) > 0 s.t. ‖x − y‖V < δ =⇒
‖f(x)− f(y)‖W < ε. If f is continuous at each x ∈ V we say f is continuous.

Theorem 39: Let (V, ‖ · ‖V ) and (W, ‖ · ‖W ) be normed vector spaces and T : V →W be linear. Then the
following are equivalent:

1. T is continuous at 0V .

2. T is continuous.

3. {‖T (v)‖W : ‖v‖V ≤ 1} is bounded on R (in which case we say T is bounded).

Proof.

1 =⇒ 2: Assume T is continuous at 0V and fix any v ∈ V . ∀ε > 0 ∃δ = δ0V (ε) > 0 s.t. ‖v − 0V ‖V =
‖v‖V < δ =⇒ ‖T (v) − T (0V )‖W = ‖T (v) − 0W ‖W = ‖T (v)‖W < ε. If ‖y − v‖V < δ then
‖T (y)− T (v)‖W = ‖T (y − v)‖W < ε. Thus T is continuous.

2 =⇒ 1: Obvious.

1 =⇒ 3: T is continuous at 0V so ∃δ(1) s.t. ‖v‖V < δ =⇒ ‖T (v)‖W < 1. Then ‖u‖V ≤ 1 =⇒ ‖ 12δu‖V ≤
1
2δ < δ =⇒ ‖T ( 1

2δu)‖W < 1 =⇒ ‖T (u)‖W ≤ 2
δ . Then sup{‖T (u)‖W : ‖u‖V ≤ 1} ≤ 2

δ so T is
bounded.

3 =⇒ 1: PutK := sup{‖T (u)‖W : ‖u‖V ≤ 1}. Then ∀ε > 0, ‖v‖V ≤ ε
2K =⇒ ‖2Kε v‖V ≤ 1 =⇒ 2K

ε ‖T (v)‖W =

‖T ( 2K
ε v)‖W ≤ K =⇒ ‖T (v)‖W ≤ ε

2 < ε. So putting δ0V (ε) = ε
2K we have T continuous at 0V .

Proposition 40:

1. If ‖ · ‖V , ‖ · ‖′V are equivalent norms on V and ‖ · ‖W , ‖ · ‖′W are equivalent norms on W then a linear
map T : V →W is (‖ · ‖V , ‖ · ‖W )-continuous =⇒ T is (‖ · ‖′V , ‖ · ‖′W )-continuous.

2. Any linear map T : Rn →W is (‖ · ‖1, ‖ · ‖W )-continuous.

3. For any norm ‖ · ‖ on Rn any linear map T : Rn →W is (‖ · ‖, ‖ · ‖W )-continuous.
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11 NORMED VECTOR SPACES

4. T : C[0, 1]→ R, T (f) = f(0) is linear and (‖ · ‖∞, | · |)-continuous but not (‖ · ‖1, | · |)-continuous.

Proof.

1. If ∀v ∈ V , ∀w ∈W , ‖v‖V ≤ K‖v‖′V and ‖w‖′W ≤ L‖w‖W then ‖v‖′V < 1
K δ(

ε
L ) =⇒ ‖v‖V ≤ K‖v‖′V <

δ( εL ) =⇒ ‖T (v)‖′W ≤ L‖T (v)‖W < L · εL = ε

2.
∑n
j=1 |xj | = ‖x‖1 ≤ 1 =⇒ ‖T (x)‖W = ‖T (x1e1+...+xnen)‖W ≤

∑n
j=1 |xj |‖T (ej)‖W ≤ maxj ‖T (ej)‖W

so T is bounded hence continuous.

3. Follows from 1. and 2. by equivalence of norms on Rn (Theorem 36 + Lemma 35).

4. • T (λf + µg) = λf(0) + µg(0) = λT (f) + µT (g)

• sup{|f(x)|} = ‖f‖∞ ≤ 1 =⇒ |f(0)| ≤ 1 so sup{|f(0)| : ‖f‖∞ ≤ 1} ≤ 1 and T is bounded hence
continuous.

• However consider fn(x) :=

{
n− n2x, 0 ≤ x ≤ 1

n

0 x > 1
n

then ‖fn‖1 =
∫ 1

0
|fn| = 1

2 ≤ 1 but N =

{|fn(0)| : n ∈ N} ⊂ {f(0) : f ∈ C[0, 1], ‖f‖1 ≤ 1} is not bounded, hence T is not continuous.

Theorem 41: L(V,W ) := {T : V → W : T linear and (‖ · ‖V , ‖ · ‖W )-continuous} is a vector space and
‖T‖ := sup{‖T (v)‖W : ‖v‖V ≤ 1} is a norm on it. It is called the operator norm.

Proof. λ, µ ∈ R, S, T ∈ L(V,W ) =⇒ λT + µS is linear (Linear Algebra).

‖λS + µT‖ : = sup{‖(λS + µT )(v)‖W : ‖v‖V ≤ 1}
= sup{‖(λS(v) + µT (v))‖W : ‖v‖V ≤ 1}
≤ sup{|λ|‖S(v)‖W + |µ|‖T (v)‖W : ‖v‖V ≤ 1}
≤ |λ| sup

‖v‖V ≤1
‖S(v)‖W + |µ| sup

‖v‖V ≤1
‖T (v)‖W

= |λ|‖S‖+ |µ|‖T‖ <∞ (∗)

(iii): So λS + µT is bounded and so continuous (by Theorem 39). Hence λS + µT ∈ L(V,W ). Putting
λ = µ = 1 in (∗) gives ‖S + T‖ ≤ ‖S‖+ ‖T‖

(ii): Also ‖λS‖ = sup‖v‖V ≤1 ‖λS(v)‖W = |λ| sup‖v‖V ≤1 ‖S(v)‖W = |λ|‖S‖

(i): Always ‖T‖ ≥ 0 and ‖T‖ = 0⇔ sup{‖T (v)‖W : ‖v‖ ≤ 1} = 0⇔ (‖v‖V ≤ 1 =⇒ T (v) = 0W )⇔ ∀v ∈
V \ {0V }, T (v) = ‖v‖V · T ( v

‖v‖V ) = ‖v‖V · 0W since ‖ v
‖v‖V ‖V = 1 = 0W . v = 0V =⇒ T (v) = 0W ⇔

T = 0L(V,W )

Remark: The set of m× n matrices over K, L(Rn,Rm) ∼= vector space of all these are bounded by Propo-
sition 40 part 3.

Definition 15:

1. For x in a normed vector space (V, ‖ · ‖) define the open ball of centre x and radius δ > 0 as B(x, δ) =
B(x, δ, ‖ · ‖) := {y ∈ V : ‖y − x‖ < δ}.

2. U ⊂ V is called an open subset if ∀x ∈ U ∃δ = δx > 0 s.t. B(x, δx, ‖ · ‖) ⊂ U

Example:

• In (R, | · |), B(x, δ) = (x− δ, x+ δ).

• In R2, see picture.
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11 NORMED VECTOR SPACES

• In (C[0, 1], ‖ · ‖∞), B(f, δ, ‖ · ‖∞) = {g : [0, 1]→ R cts : f − δ < g < f + g}

x

‖ · ‖∞

‖ · ‖2

‖ · ‖1

Lemma 42: B(x, δ) is an open subset of (V, ‖ · ‖) and B(x, δ) = x+ δB(0, 1)

Proof. Let y ∈ B(x, δ). Then ‖y − x‖V < δ =⇒ δ − ‖y − x‖V > 0. Then ‖z − y‖V < δ − ‖y − x‖V =⇒
‖z − x‖V ≤ ‖z − y‖V + ‖y − x‖V < δ so B(y, δ − ‖y − x‖V ⊂ B(x, δ)
‖v‖V < 1⇔ ‖δv‖V < δ ⇔ ‖(x+ δv)− x‖V < δ ⇔ x+ δV ∈ B(x, δ)

Lemma 43: If ‖ · ‖a and ‖ · ‖b are equivalent norms on V then U open in (V, ‖ · ‖b)⇔ U is open in (V, ‖ · ‖a).

Proof. ( =⇒ ): Take K ∈ R+ s.t. ‖v‖b ≤ K‖v‖a ∀v ∈ V . Then ‖v‖a < δ
K =⇒ ‖v‖b < δ so B(x, δK , ‖·‖a) :=

{y ∈ V : ‖y − x‖a < δ
K } ⊂ {y ∈ V : ‖y − x‖b < δ}. If U is open in (V, ‖ · ‖b) then ∀x ∈ U ∃δ > 0 s.t.

B(x, δ, ‖ · ‖b) ⊂ U and then B(x, δK , ‖ · ‖a) ⊂ U so U is open in (V, ‖ · ‖a).
( =⇒ ): identical proof.

Example: B(0, 1, ‖ · ‖2) is open in (R2, ‖ · ‖2) but also in (R2, ‖ · ‖∞), ‖v‖2 ≤
√

2‖v‖∞

Remark: The definition of continuity for f : (V, ‖ · ‖V )→ (W, ‖ · ‖W ) can be defined in terms of open balls.

Definition 14 (equivalently): f is continuous at x ∈ V if ∀ε > 0 ∃δx(ε) > 0 s.t. f(B(x, δx, ‖ · ‖V )) ⊂
B(f(x), ε, ‖ · ‖W )

Proposition 44: A function f : V →W is (‖ · ‖V , ‖ · ‖W )-continuous ⇔ ∀U open in (W, ‖ · ‖W ), f−1(U) is
open in (V, ‖ · ‖V ).

Proof. ( =⇒ ): Let U be open in (W, ‖ · ‖W ) and x ∈ f−1(U). Then f(x) ∈ U and ∃εf(x) > 0 s.t.
B(f(x), εf(x), ‖ · ‖W ) ⊂ U . Since f is continuous at x ∃δx > 0 s.t. f(B(x, δx, ‖ · ‖V )) ⊂ B(f(x), εf(x), ‖ · ‖W ).
Hence f(B(x, δx, ‖ · ‖V ) ⊂ U so B(x, δx, ‖ · ‖V ) ⊂ f−1(U). Therefore f−1(U) is open in (V, ‖ · ‖V ).
( =⇒ ): Given x ∈ V and ε > 0, B(f(x), ε, ‖ · ‖W ) is open in (W, ‖ · ‖W ) (by Lemma 42) so by assumption
f−1(B(f(x), ε, ‖ · ‖W )) is open in (V, ‖ · ‖V ). Also x ∈ f−1(B(f(x), ε, ‖ · ‖W )) since f(x) ∈ B(f(x), ε, ‖ · ‖W )
so ∃δx > 0 s.t. B(x, δx, ‖ · ‖W ) ⊂ f−1(B(f(x), ε, ‖ · ‖W )).
Thus f(B(x, δ, ‖ · ‖V )) ⊂ B(f(x), ε, ‖ · ‖W ). So f is (‖ · ‖V , ‖ · ‖W )-continuous.

Definition 16: U ⊂ V is called a closed subset if V \ U is open.

Example: in (R, | · |), [a, b] is closed because R \ [a, b] = (∞, a) ∪ (b,∞). [a, b) is neither open (∀δ > 0 ∃ no
B(a, δ) ∈ [a, b)) nor closed ([b,∞) is not open).

Proposition 45: Let (V, ‖ · ‖) be a normed vector space and U ⊂ V . Then the following are equivalent:

1. U is closed.
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2. If xn ∈ U ∀n ∈ N and xn → x as n→∞ then x ∈ U .

Proof.

1 =⇒ 2: Let xn → x as n→∞ and xn ∈ U ∀n. Suppose x 6∈ U . Then x ∈ V \U . Since V \U is open ∃ε > 0 s.t.
B(x, ε) ⊂ V \ U . Now ‖xn − x‖ → 0 as n→∞ so ∃m ∈ N s.t. ‖xm − x‖ < ε and hence xm ∈ B(x, ε)
so xm ∈ V \ U – contradiction.

2 =⇒ 1: suppose U is not closed. Then V \ U is not open so ∃x ∈ V \ U s.t. no B(x, ε) is contained in V \ U .
Choosing ε = 1

n , n = 1, 2, ... get a sequence of points (xn) in V s.t. ∀n, xn ∈ B(x, 1
n ) and xn ∈ U .

Thus ‖xn − x‖ → 0 as n→∞ and by assumption x ∈ U – contradiction.

The set {y ∈ V : ‖y− x‖V ≤ δ} =: B̄(x, δ, ‖ · ‖V ) is called a closed ball (of centre x, radius δ). It is a closed
set.

Proof. If yn ∈ B̄(x, δ) ∀n and yn → y as n→∞, then limn→∞ ‖yn − x‖ ≤ δ ⇔ ‖y − x‖ ≤ δ

In conclusion, U is open in V when U “has no boundary points”, i.e. from any point in U can go some
positive distance in V without going outside of U . U is closed iff it contains its limit points.
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12 CONTRACTION MAPPING AND SOLUTION TO AN ODE

12 Contraction Mapping and Solution to an ODE

Theorem 46 (Contraction Mapping Theorem/Banach fixed point Theorem/Method of Successive Itera-
tions): Let (V, ‖ · ‖) be a Banach space, U ⊂ V a non-empty closed subset. 0 < K < 1, f : U → U a function
satisfying:

x, y ∈ U =⇒ ‖f(x)− f(y)‖ ≤ K‖x− y‖
(Such an f is called a contraction mapping) Then f has a unique fixed point z ∈ U , i.e. a point z s.t.
f(z) = z. Moreover, ∀x ∈ U , (xn)→ z as n→∞, where we define inductively xn+1 = f(xn) with x0 = x.

Example: (V, ‖ · ‖) = (R, | · |), U = [ 12 , 2], f : x 7→
√
x

f maps U into itself: [ 1√
2
,
√

2] ⊂ [ 12 , 2].
√
x = x in [ 12 , 2] ⇔ x = 1 is a unique fixed point. Γ|[ 12 ,2] is a

contraction with K = 1√
2
< 1 by MVT.

|
√
x−√y| =

∣∣∣∣12√ξ
∣∣∣∣ |x− y| ≤ 1√

2
|x− y|, x ≤ ξ ≤ y (WLOG)

1/2

1/
√
2

1

√
2

2

1

Proof of Theorem 46.
Existence: pick x0 ∈ U and let xn = fn(x0), where fn(z) := f ◦ f ◦ ... ◦ f(z) (the nth composition of f). For
n ≥ 1:

‖xn − xn+1‖ = ‖f(xn−1)− f(xn)‖
≤ K‖xn−1 − xn‖
≤ K2‖xn−2 − xn−1‖

...

≤ Kn‖x0 − x1‖ (by induction)

If m > n the triangle inequality gives:

‖xn − xm‖ ≤ ‖xn − xn+1‖+ ‖xn+1 − xn+2‖+ ...+ ‖xm−1 − xm‖
≤ (Kn +Kn+1 + ...+Km−1)‖x0 − x1‖

≤ Kn

1−K
· ‖x0 − x1‖ → 0 as n→∞

Therefore (xn) is Cauchy so converges to some point x̄ ∈ U since U is closed (by Proposition 45).

To show x̄ is a fixed point:
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1. If ‖f(x̄) − x̄‖ > 0 let ε = 1
3‖f(x̄) − x̄‖. ∃N ∈ N s.t. ‖xn − x̄‖ < ε ∀n ≥ N , then ‖f(xn) − f(x̄)‖ ≤

K‖xn − x̄‖ < Kε < ε.
So ‖x̄− f(x̄)‖ ≤ ‖x̄− xn+1‖+ ‖xn+1 − f(x̄)‖ < ε+ ε = 2

3‖f(x̄)− x̄‖
∴ ‖x̄− f(x̄)‖ = 0, ∴ f(x̄) = x̄

2. Alternatively: f is a contraction =⇒ f is continuous (proof: ‖f(x)−f(y)‖ < K‖x−y‖ : take δ = ε
2K ).

Then f(x̄) = limn→∞ f(xn) = limn→∞ xn+1 = x̄.

Uniqueness: If f(z) = z and f(y) = y then ‖z − y‖ = ‖f(z) − f(y)‖ ≤ K‖z − y‖ (K < 1). ∴ ‖z − y‖ = 0,
∴ z = y so f has at most one fixed point in U .

Lemma 47: If F : R2 → R is continuous, x0, y0 ∈ R and δ > 0 then the following are equivalent:

1. y : [x0 − δ, x0 + δ]→ R is differentiable and satisfies

{
dy
dt = F (x, y),

y(x0) = y0
∀x ∈ [x0 − δ, x0 + δ]

2. y : [x0 − δ, x0 + δ]→ R is continuous and satisfies y(x) = y0 +
∫ x
x0
F (s, y(s)) ds ∀x ∈ [x0 − δ, x0 + δ]

Proof.

1 =⇒ 2: y differentiable =⇒ y continuous and since F is continuous, FTC 2 (Theorem 18) =⇒ y(x)− y(x0) =∫ x
x0
F (s, y(s)) ds. Since y(x0) = y0, y(x) = y0 +

∫ x
x0
F (s, y(s)) ds ∀x ∈ [x0 − δ, x0 + δ].

2 =⇒ 1: immediate consequence of FTC.

Picard iteration method: let y(0)(x) = y0, y
(n+1)(x) = y0 +

∫ x
x0
F (s, y(n)(s)) ds, n = 0, 1, 2, ... (y(n) = nth

approximation to solution)

Example:{
dy
dx = y,

y(0) = y0
y(1)(x) = y0 +

∫ x

0

y0 ds = y0(1 + x)

y(2)(x) = y0 +

∫ x

0

y0(1 + s) ds = y0

(
1 + x+

x2

2

)
...

y(n)(x) = y0 +

∫ x

0

y(n−1)(s) ds = y0 +

∫ x

0

y0

(
1 + s+ ...+

sn−1

(n− 1)!

)
ds = y0

(
1 + x+ ...+

xn

n!

)
(by induction)

→ y0e
x as n→∞

Theorem 48: Let F : R := [x0 − a, x0 + a]× [y0 − b, y0 + b]→ R be continuous and assume ∃L > 0 s.t.

|F (x, y)− F (x, z)| ≤ L|y − z| (∗)

∀(x, y), (x, z) ∈ R. Then ∃δ ∈ (0, a] and a unique C1 function h : [x0 − δ, x0 + δ] → R with h(x0) = y0 and
satisfying dh

dx = F (x, h(x)) ∀x ∈ [x0 − δ, x0 + δ].

Note: (∗) is a Lipschitz condition on the second coordinate. If dF
dy (x, y) exists and is continuous then (∗)

follows from the MVT: F (x, y)− F (x, z) = dF
dy (x, ξ)(y − z) so take L = max(x,y)∈R

∣∣∣dFdy (x, y)
∣∣∣.

Proof. Let M := max(x,y)∈R |F (x, y)|. Take δ > 0 s.t.

{
δL < 1

δM ≤ b
Let V = (C[x0 − δ, x0 + δ], ‖ · ‖∞), let U := {f ∈ C[x0 − δ, x0 + δ] : f(x0) = y0 and ‖f − y0‖∞ ≤ b}.
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Then U is a non-empty closed subset of Banach space V so U is complete. Define the Picard operator
P : U → V : f 7→ Pf . (Pf)(x) := y0 +

∫ x
x0
F (s, f(s)) ds. From Lemma 47, h : [x0 − δ, x0 + δ] → R is a

solution of IVP

{
y′ = f(x, y)

y(x0) = y0
⇔ (Ph)(x) = h(x) ∀x ∈ [x0 − δ, x0 + δ] (i.e. h is a fixed point of the Picard

operator)
To show P maps U into itself: (Pf)(x) = y0 +

∫ x
x0
F (s, f(s)) ds so y(x0) = y0 and |(Pf)(x) − y0| ≤

|x− x0| supx∈[x0−δ,x0+δ] |F (x, f(x))| hence ‖Pf − y0‖∞ ≤ δM and thus Pf ∈ U if δM ≤ b.
To show P is a contraction:

‖Pf − Pg‖∞ = sup
x∈[x0−δ,x0+δ]

∣∣∣∣∫ x

x0

[F (s, f(s))− F (s, g(s))] ds

∣∣∣∣ ≤ δL sup
x∈[x0−δ,x0+δ]

|f(x)− g(x)|

= δL‖f − g‖∞

So P is a contraction if K = δL < 1. The Contraction Mapping Theorem implies P has a unique fixed point,
h : [x0 − δ, x0 + δ]→ R, h has the required properties by Lemma 47.
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13 Power Series

Apply theory in chapter 9 to power series
∑∞
k=0 akx

k, ak ∈ R

Theorem 49: Suppose
∑∞
k=0 akx

k converges for x = x0 6= 0 and 0 < b < |x0|. Then
∑∞
k=0 akx

k converges
uniformly on [−b, b] and the derived series

∑∞
k=0 kakx

k−1 converges uniformly on [−b, b].

Proof. (Idea: use M-test and b
|x0| < 1)∑

akx
k
0 converges so akx

k
0 → 0 as k → ∞ and all terms are bounded. Choose k ∈ R+ s.t. |akxk0 | ≤ k. If

|x| ≤ b then:

|akxk| ≤ |akbk| ≤ k
(

b

|x0|

)k
=: Mk

∑
Mk converges with k

1− b
|x0|

so M-test implies
∑∞
k=0 akx

k converges uniformly on [−b, b].
∑
kk
(

b
|x0|

)k−1
converges (by ratio test). Therefore,

∑∞
k=0 kakx

k−1 converges uniformly on [−b, b].

Remark:

1. The same proof works for ak, x, x0 ∈ C and 0 < b < |x0|. Both series converge uniformly on {x ∈ C :
|x| ≤ b}.

2. R := sup{|x0| :
∑
akx

k
0 converges} ∈ [0,∞] defines the radius of convergence of the series and satisfies:{

z ∈ C : |z| < R =⇒
∑
k akx

k converges.

z ∈ C : |z| > R =⇒ {akzk : k ∈ N} is not bounded and
∑
k akz

k diverges.

Theorem 50 (termwise differentiation and integration): Let R > 0 and let
∑
k=1 akx

k be a real power
series that converges pointwise on (−R,R) ⊂ R to f : (−R,R)→ R. Then f is continuous and differentiable

with ∀x ∈ (−R,R), f ′(x) =
∑
k=1 kakx

k−1. If −R < c < d < R. Then f |[c,d] is regulated and
∫ d
c
f =∑∞

k=0 ak
(dk+1−ck+1)

k+1 .

Proof. Take 0 < b < x0 < R. Then
∑
akx

k
0 converges so by Theorem 49,

∑
akx

k converges uniformly
on [−b, b]. By Theorem 25’, f |[−b,b] is continuous at each point of [−b, b]. (−R,R) =

⋃
0<b<R(−b, b) so

f : (−R,R) is continuous. Also
∑
kakx

k−1 converges uniformly on [−b, b] by Theorem 49, and by Theorem
29’, f is C1 on [−b, b] with f ′(x) =

∑∞
k=1 kakx

k−1, so f is C1 on (−R,R). The integral result follows from
Theorem 24’ and: ∫ d

c

(

n∑
k=0

akx
k) dx =

n∑
k=0

ak

∫ d

c

xk dx =

n∑
k=0

ak
dk+1 − ck+1

k + 1

Remark: By applying Theorem 50 repeatedly we find the function f : (−R,R) → R is infinitely differen-
tiable with f (k)(0) = k!ak. Hence the Taylor series of f is

∑∞
k=0 akx

k which is f ! If f is given by a power

series then its Taylor series is that same series, which does converge to f . Hence

{
e−

1
x2 , x 6= 0

0, x = 0
which has

Taylor series
∑
k 0xk = 0 is not given by a power series.
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13 POWER SERIES

Definition 17: Define the following functions: R→ R (or indeed C→ C) by power series:

sin : sin(x) :=

∞∑
k=0

(−1)kx2k+1

(2k + 1)!
sinh : sinh(x) :=

∞∑
k=0

x2k+1

(2k + 1)!

cos : cos(x) :=

∞∑
k=0

(−1)kx2k

(2k)!
cosh : cosh(x) :=

∞∑
k=0

x2k

(2k)!

exp : exp(x) :=

∞∑
k=0

xk

k!

but log : (0,∞)→ R, log(x) :=
∫ x
1

1
t dt.

Proposition 51: The radius of convergence of each of the series for sin, sinh, cos, cosh, exp is ∞.

Proof. For cos, ∀x ∈ R:∣∣∣∣ (−1)k+1x2k+2

(2k + 2)!

/
(−1)kx2k

(2k)!

∣∣∣∣ =

∣∣∣∣ x2

(2k + 2)(2k + 1)

∣∣∣∣→ 0 as k →∞

so ∀x converges by the ratio test (similar method for the other functions).

Corollary 52: On R, exp′ = exp, cosh′ = sinh, sinh′ = cosh, cos′ = − sin, sin′ = cos.

Note: also true on C.

Proof. By Theorem 50, within (−R,R) = R:

exp′(x) =

∞∑
k=1

kxk−1

k!
=

∞∑
j=0

xj

j!
= exp(x)

cos′(x) =

∞∑
k=1

(1)k(2k)x2k−1

(2k)!
= −

∞∑
j=0

(−1)j
x2j+1

(2j + 1)!
= − sin(x) (put j = k − 1)

Others similarly.

Recall: a series
∑
ak is absolutely convergent if

∑
|ak| < ∞, in which case any rearrangement of

∑
ak is

absolutely convergent and gives the same sum, and:∑
j

aj

(∑
k

bk

)
=
∑
j,k

ajbk

Proposition 53: ∀x ∈ C:

cosh(x) =
1

2
(exp(x) + exp(−x))

sinh(ix) = i sin(x)

sinh(x) =
1

2
(exp(x)− exp(−x))

cosh(ix) = cos(x)

exp(ix) = cos(x) + i sin(x)

exp(x+ y) = exp(x) exp(y)

cos(x+ y) = cos(x) cos(y)− sin(x) sin(y)

sin(x+ y) = sin(x) cos(y) + sin(y) cos(x)

(cos(x))2 + (sin(x))2 = 1
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13 POWER SERIES

Proof. Rearranging:

1

2
(exp(x)− exp(−x)) =

1

2

∞∑
k=0

xk

k!
− 1

2

∞∑
k=0

(−1)kxk

k!
=

1

2

∞∑
k=0

(1− (−1)k)
xk

k!
=

∞∑
j=0

x2j+1

(2j + 1)!
= sinh(x)

exp(x+ y) =

∞∑
k=0

(x+ y)k

k!
=

∞∑
k=0

k∑
j=0

k!xjyk−j

j!(k − j)!k!
=

( ∞∑
l=0

yl

l!

) ∞∑
j=0

xj

j!

 = exp(y) exp(x)

(binomial theorem)

Others, similarly:
1 = cos(0) = cos(x− x) = cos(x) cos(x) + sin(x) sin(x)

(using sin(−x) = − sin(x) and cos(−x) = cos(x))

Proposition 52: There is π > 0 with ∀x ∈ R, sin(x+ π) = − sin(x) and cos(x+ π) = − cos(x).

Proof. sin′(0) = cos(0) = 1 and sin(0) = 0 so for all small positive x, sin(x) > 0. For 0 < x < 12:

sin(x) < x− x3

3!
+
x3

3!
− x7

7!
+
x9

9!
(since −x

11

11! + x13

13! < 0, and the same for the next terms)

and sin(4) < 4 − 43

3! + 45

5! −
47

7! + 49

9! < −0.6617 < 0. By the IVT (Analysis II) sin takes value 0 in (0, 4).
Define π as the smallest x in (0, 4) with sin(x) = 0. Then cos′ = − sin is negative on (0, π) so the MVT
implies that cos |[0,π] is strictly decreasing. By Proposition 51 cos2(π) + sin2(π) = 1 so cos(π) = −1. Hence:

sin(x+ π) = sin(x) cos(π) + cos(x) sin(π) = − sin(x)

cos(x+ π) = cos(x) cos(π)− sin(x) sin(π) = − cos(x)

Note: ∀x ∈ R

{
sin(x+ 2π) = − sin(x+ π) = sin(x)

cos(x+ 2π) = − cos(x+ π) = cos(x)

i.e. these functions are periodic with period 2π and so is any linear combination of them of sin(kx) and
cos(kx), and any pointwise convergent

∑
k∈N(ak cos(kx) + bk sin(kx)) (recall Fourier series).
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