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Introduction

These lecture notes are a projection of the MA359 Measure Theory course 2013/2014, delivered by Dr José
Rodrigo at the University of Warwick. These notes should be virtually complete, but the tedious trea-
sure hunt of errors will always be an open game. And, obviously, completeness and accuracy cannot be
guaranteed. If you spot an error, or want the source code to fiddle with in your way, send an e-mail to
me@tomred.org. We hope these are helpful, and good luck!

Tom and Usman ©

Useful links

1. The up-to-date version of these notes should be found here:
https://www.dropbox.com/sh/zqreyxdldyazpes/01baDh95ze/Year),203/MA359%20Measure’,20Theory

2. Failing that:
http://www.tomred.org/lecture-notes.html

3. Students taking this course should also take a look at Lewis Woodgate’s Skydrive notes:
https://skydrive.live.com/view.aspx?resid=AC6ACOE3BEE89219!308&app=0neNote&authkey=!AB4KXPRDOKGOQKc

4. ...and Alex Wendland’s Dropbox notes:
https://www.dropbox.com/sh/5m63moxv6csy8tn/LY3576RtRQA/Year’,203/Measure,20theory



We want to measure every subset of R. i.e. we want a map:

m: P(R) — [0, o]
—
parts of R

where m(interval (a,b)) = b - a (same with intervals such as [a,b)). e.g. m((1,2)) =2-1.
Wish list form:

1.
m((a,b))=b-a
2.
m(A) =m(A+h) (VACR, VheR)
3. - -
A= L;J1An = m(A4) = Z:lm(An)

Claim. There isn’t such an m.
Goal: “Construct” a subset R, such that it is impossible to assign a measure and satisfy the proposition in
the wish list.

1 Real Line

Agree on the measure of intervals:

I=(a,b)
= [a,0)
= (a, b]
= [a, 0]

m(I) = “usual length” of I =b-a
Definition 1. Let A< R:

m*(A) = inf{z |Ii| : I, are open intervals and Ac | J Ik}
k=1 k=1

where |Iy| is the length of the interval I. m* is the outer measure.
Construction:

1. Cover A by lots of open intervals.

2. Summing the lengths creates a set in [0, co].

3. Compute the infimum (the existence of which is trivial, as the set in question is bounded below).
Proposition 1 (Properties of m*).

1. 0<m*(A) YAcCR.

2. m*(Q) =0 (surprising because Q is dense).

3. m* is defined for P(R) (it is defined for every subset of R).

4. m*(A) <m*(B) whenever Ac B.



5. m*(I) = |I] for any interval 1.

6. m*(A+h)=m*(A) VheR, AcR.

Proof.

1.
2.

For any interval I, |I| >0, and as m*(A) is a greatest lower bound, m*(A) >0 VA.

Take {x,} to be an enumeration of Q. Define:

€ €
I, = (:Jcn "ot Gt )
for any fixed € > 0. Notice |I,| = 57 and Q c (U;Z; I,). Since:
m*(Q) = inf{z |Jn|: Jp, open and Q c | Jn}
n=1 n=1

we have:

=&

m*(Q) < 2—:1 [n| =

n

AN

£

27l
So 0 <m*(Q) < e for any € > 0. By sending e > 0 = m*(Q) =0
Y ieq [Ii] is defined as it is a limit of an increasing sequence, so our infimum will always be defined.

Every open cover of B by intervals also covers A == the collection of elements over which we
compute = m*(A) < m*(B).

We will show two inequalities:
m*(I) < |1
m*(I) > |1

Now for |I| <m*(I):
Take a cover of I, {I,}7>;. Since I = [a,b] there exists a finite subcover of I (as it’s compact and
closed). Upon relabelling the sets, say:

117[2a ;IN
‘We have our finite subcover of I:
I I3 Iy
— — —
( ) ( ) ( )
T [ I I I 1 T
a1 as as ayq AN+1
( )

As these are all open, there is overlap inbetween the open intervals. Choose a point in each of the
overlapping intervals. i.e. choose a; from each I;nI;,1. So (a1,a2) c I, (az,a3) c Ir and (a;,a;4+1) € I;.
Now:

N
|b-al<lans1 —a1l=ans1 —an+ay —ay-1 +an-1— ... +az —aj = Zajﬂ -a;
j=1
As aj1 —a; <|I;|. Then:
N N oo
Il =1b-al <) ajm—a; <) |1 < | (for all open covers)

i=1 TR



Which implies:
7] < inf{z |1;]: I; open..} =m*(I)
j=1
Now for |I| >m*(I):
Say I =[a,b]. Define I = (a—§,b+3), [; =@ Vj>2.

= [avb] Cuﬁl Ij
= m*(I)<||<b-a+e=|l|+eVe>0

= ase—>0,m*(I)<|]|

6. Reason is |I + h| =|1].

The only property that we do not have is:
m*(AuB)=m"(A) + m*(B)
Another observation:

Ac ) A, — m*(A) gm([] An) <3 m*(A,)

1 n=1

Proof. Ve >0 there exists a countable collection of open intervals {I,, x } 7o, such that:
oo . 6
Z |In,kr| <m (An) + on
k=1

If 3>, m*(A,) = oo, there is nothing to prove. Else, sum (*) w.r.t. n:

Z |In,k| < Z m*(An) +ée
n,k=1 n=1

Want to show:
m* (U An) < Z | Lk < (Z m*(An)) +e
n=1 n,k n=1

This is true Ve > 0 so send € — 0.

1.1 Cantor set

f | Co
0 1
| | | o
1 2
0 1 2 1
: | : | : | | | Oy
1 2 1 2 7 8
0 5 5 3 3 3 s 1

(it’s false)

(**)



C :=N,>, Cp, but there exists a bijection between C' and R.

m*(C) <m*(C,) <2" (%)n—>0 (as n — o)

So m*(C') = 0. Thus measure and cardinality do not mix well...
Definition 2. We say that A c R is measurable iff:
m*(E)=m*"(EnA)+m”*(En A°) (VE cR)
Remark 1. It is enough to show m*(E) >m*(EnA)+m*(En A°) VE cR. This is because:
Ec(EnA)u(EnA®) = m"(E)<m (EnA)u(EnA°))<m"(EnA)+m*(EnA°)

by the above proposition.
Example 1 (Examples of measurable sets).

o Q is measurable, as m*(Q) =0.

o Any set AcR with m*(A) =0.

Proof.

(EnA)cA = m"(EnA)<m*(A)=0
(EnA°)cE = m"(EnA°) <m*(E)
= m*(E)>m"(EnA)+m*(EnA°)

O
e R\ Q is by the lemma below.
Lemma 1. A measurable = A° measurable.
Proof.
m*(E)=m*"(EnA°)+m”*(En (A°)°)
O
Proposition 2. Intervals are measurable.
Proof. Want to show:
m*(E)=m*(EnI)+m*(EnI°) (VE cR)

First, take an open cover of E by intervals, say {Ey}io,. In Ej is an interval Yk. I°n Ej is at most two
intervals Vk.
(From {E}} it isn’t possible to construct (open) covers of I n E and I n E°)
(I nEy) c Ay for Ay an open interval.
(I°n Eyg) c (B uCy) for By, Cy open intervals.
Choose such that: .
|Ak| + |Bk| + ‘Ck| < |Ik| + 2?

Now, {I}} cover E:
(o] 8 oo
> (el + 5c) 2 X Vel +1Bel

n=1



Also:

UnL) e A & G(Am]k):Am([j Ik)
k=1 k=1 k=1 ko1
& AOEC(G Ik)
k=1

(Similarly for |Bg|+ |Ck|)
So:

> Ak| + | Bl +|Ck| > m* (En A) + m*(E n A%)
=1

= m* (EnA)+m*(EnA°) > (Z |Ik|) +e
=1

By taking the infimum over all possible covers:
m (EnA)y+m " (EnA°)<m*(E)+¢
Finally, let € - 0.

Proposition 3. A, B measurable =— AU B and An B measurable.

Proof. We know m*(F)=m*(FnA)+m*(FnA°) VF. Take F = En(Au B) for some E. We want:

m*(E)=m"(En(AuB))+m"(En(AuB)°)

m* (En(AuB))=m*(En(AuB)nA)+m*(En(AuB)nA°)

=m*(EnA)+m*(EnBnA°)
Now:

m*(E)=m*"(EnA)+m”*(En A°)
=m (EnA)+m* (EnA°nB)+m*(EnA°n B°)
=m*(En(AuB))+m*(En(AuB)°)

For intersection:

A€ and B¢ measurable = A€ u B° measurable
= (A°uU B)° measurable

= An B measurable.

Proposition 4. Let Ay,..., Ay measurable and pairwise disjoint. Then:

N N
m* (EOUAZ) = Zm*(EmAZ-)

i=1

Note, if E =R, then:

(as A is measurable)

(as B is measurable)



Proof. By induction. N =1 is trivial. Assume true for 1,..., N. Then:

N+1 N+1 N+1
m* (Em U Ai) =m* ((Em U Ai)mANH)er*((Em U Ai)nAf\,H)

n=1 n=1 n=1

N
=m* (EnAns)+m” (Em U Ai)
n=1

N
=m*(EnAnq)+ Y, m* (EnA;) (by induction)
n=1
N+1

= Y (En4)
i-1

O

Proposition 5. Let {A4;}2, be measurable. Then U2, A; is measurable. Moreover, if A; are pairwise
disjoint then:

Proof. Let B:=U72; A; & By, == U, A; which is measurable by a previous proposition. Want to show:
m*(E)=m*(EnB)+m*(EnB°)
Assume for the moment that A, are pairwise disjoint. We know that m*(E) =m*(En By,) + m*(En BS):

B, cB = B°cB;
= (EnBy;)>(EnB°
= m*(EnB;)>m"(EnB°)
Thus:

m*(E)>m*(EnBy,) +m*(En B°)
>m*(EnB,)+m”*(En B°)

—_—
=m*(EnUL; 4)

>> m*(EnA;)+m*(EnB°)
i1

Now, LHS > RHS and LHS is independent of n, so:

LHS > lim RHS

n—>oo

m*(E)> Y. m* (Bn A)+m (En B

i=1

Now, consider:

m*(EnB)=m" (EﬂGAi)

=1

- (Q(EnAi))

Nk

< m*(EnAi)

=
I
[



So m*(E)>m*(EnB)+m*(En B°). But:
m*(E) <m*(EnB)+m*(EnB°)
= m*(E):Zm*(EmAi)+m*(Em(UAZ—) ) (VE)
i=1 i=1
Thus, take F = J72; A;, then:
m* (U Ai) = > m*(4;) + m* (o)
i=1

Finally, need to show the extra hypothesis of pairwise disjoint. Define:

Wi =4,
Wy = Ay N Ay = Ay n A (measurable)
W3 = Az~ (A1 U Ay) (measurable)
n-1
W, = A, ~ ( A,)
=1
Thus: - -
Uai=Jw;
i=1 i=1
W, are measurable and pairwise disjoint. O

Observation: {B;}, measurable = N7, B; measurable.
Proposition 6. List of properties of measurable sets:
o Complements, countable unions and intersections of measurable sets are measurable.

Intervals are measurable.

(Countable additivity) A; measurable and pairwise disjoint = m* (U2, 4;) = Yioy m*(A;).

(Countinuity) A; measurable and Ay 2 Ay > ...0 Ay 2 Apyr o ... and B; measurable and By c By c ...
B, c By c... and m*(Ay) <oo. Then N2, A; & U2, B; are measurable. Moreover:

71—00

m* (QAi) = }E?o m*(4;) & m” (L—J1 Bi) = lim m*(B;)

(Translation invariance) A measurable = A+ h measurable.

m*(A) =m*(A+h)

Open and closed sets are measurable.

(Approximation property) A measurable, then Ve >0 3B closed, C open, Bc Ac C s.t. m*(C\B) <e.
Moreover, if m*(A) < oo then B can be taken compact.

Proof of continuity. First, we don’t need m*(A;) < oo, we need m*(A,,) < oo for some n, as for m*(A4;) = oo,
m*(Asg) < oo. We have:

A=A

e
s

<
Il
=

=2



as A; o As.
Let’s do B;s first. By c By c B3 c ... Create a disjoint collection whose union is U;2; B;. Define:

Ci=B
CQ = BQ N B1
03 = Bg N BQ
Cn =By \Bp
Notice: - -
Wei=UB;,
i=1 1=1
SO:

lim m*(B,) = lim m* LTLJCZ) = lim Y m*(C;) =Y m*(C;) =m” (G Ci) =m"* (G Bl-)
n—ee i=1 e =1 i=1 i=1 i=1

n—oo

A1 o Az o ... measurable and m*(A;) < oco. Construct increasing set, define D,, := A; n AS measurable.
D1 C D2 c...
So we know m*(U;>y Dy,) = limy, ..o m*(Dy,), and:

AlenUDn = m*(Al):m*(An)"'m*(Dn)v (V’I’L)(*)

and:
A= 4,vJ D, = m*(Al):m*(ﬂ An)+m*(UDn).
n=1 n=1 n=1 n=1
So:
m*(Al):m*(ﬂ An)+ lim m*(D,,) (%%)
n=1 n—oo

and, by (*):

m* (A1) = lim m*(A4,) + lim m*(D,,)

as m* (A1) < oo and m*(-) > 0. So, by (#*):

= m" (ﬁ An) = lim (4,,)

n=1 n—eo

O
Proof that open & closed sets are measurable.
Claim. Every open set in R can be written like:
U=U I (for open intervals I,,)
n=1
Thus open sets in R are measurable. So closed are too as complements are measurable. O

Proof of approximation property. A is measurable, want to show that Ve > 0 3B,C with B c A c C s.t.
m*(C ~\ B) <e. First, assume A c J, J a closed & bounded interval. Since m*(A) < oo, there exists a cover
{I;}32, by open intervals:

Ac UI]
j=1

such that:
;| <m*(A) + ;

gL

J

10



and:
m*(u Ij) < DLl em(4)+ 5
J

Define:

C is open and m*(C) -m*(A) < 5.
—_—
=m*(CNA)as AcC
To find B, consider J \ A (which is measurable). We can find an open set O s.t. (J~ A) c O and:

m(0)=m*(J A) < (1)

Define B:=J O = JnO° (closed from finite intersections of closed sets). As B is measurable:

m*(C)=m*(BnC)+m*(Cn B°)
-B
=m*(B)+m*(C \ B)
So:
m*(C'\B)=m*(C)-m”(B)
=m*(C)-m*(A)+m*(A) —m*(B)

——————
<

ML)

So all that is left is to show m*(A) -m*(B) < §5:
m*(J) <m*(0wB) <m*(0) +m*(B) <m*(J ~ A) +m*(B) +§
But:

m*(J)=m"(A)+m*(J\ A)

— m*(A)+m*(J\A)<m*(J\A)+m*(B)+g
o m*(A)<m*(B)+g (as m* (J ~ A) < 00)
o m*(A)—m*(B)<%

Finally, we remove our assumption. Define:

{A )%, =An[n,n+1]

For each A, fine B, c A, c C,, with B,, closed, C,, open and m*(Cy, \ By,) < 5. Then:

UBncUAncUCy
So:
UB,cAcJC,

And let C =UC,, B=U B, open.
Exercise to show that U B,, is closed. Also:

9

TG (for some number m)

m*(C’\B)gm*(G(C’n\Bn))S $

n=1

O

11



2 General Measures

Let X be any non-empty set.
Definition 3. An algebra of sets on X is a non-empty collection A that satisfies:

e YeAd=— YcA

e V,..YV, e A= JY,eA

i=1
Definition 4. A o-algebra of sets on X is a non-empty collection of sets A that satisfies:
o A is closed under complements
o A is closed under countable unions
Observations: Collection of measurable sets from Chapter 1 is a o-algebra.

Example 2. Let X be any infinite set. Consider:
A={E c X such that E countable or E° countable}

Ezxercise: check A is a o-algebra.
Observations:
e Every o-algebra is an algebra
e If Ais an algebra, ge A4, X e A
e The word union can be changed with intersection (Exercise)
Proposition 7. An algebra that is closed under countable disjoint unions is a o-algebra.
Proof. Given {4;}$2,, A; € A we want to show:
G Aje A
i=1
Construct out of {A4;}2; a collection of pairwise disjoint collection sets B; such that (J;2y B; = U2y A;:
By = Ay
By := Ay N Ay

n—-1
Bn = An N U Az
i=1

It is clear they are disjoint by construction

Cs
=

I
Gs
oy

i1 =1
UJA;i=JBicA (by assumption)
i1 =1

O
Observation: any arbitrary intersection of o-algebras is a o-algebra

Definition 5. Let X be a non-empty set, M a o-algebra of X. A function u: M — [0,00] is a measure
if it satisfies:

e 1(2)=0

12



e Countable additivity i.e {E;}2, ¢ M, E; pairwise disjoint. Then:

W(05) - L

Definition 6. Any p: M — [0, 00] such that

e 1(2)=0
o if {E;}N, c M, E; pairwise disjoint, then:

N N
1% (U Ei) =) u(Ey)
i=1
is called o finitely additive measure (not necessarily a measure).
Notation:
e A pair (X, M), where X is a non-empty set, M is a o-algebra, is called a measurable space.
e A triplet (X, M, u) is a measure space.
e Given (X, M, p), if u(X) < oo then p is a finite measure.

o If u(X) = oo but there is a collection of sets {E;}2; such that F; e M, U2, E; = X and p(E;) < oo,
then pu is o-finite.

Example 3. Let X = R, M be the collection of measurable sets from Chapter 1, n=m*. Then u(X) =
m*(R) = oo but if E, = [-n,n], then Uprq B, = X and p(E,) = 2n < oo, so m* is o-finite.

Remark 2. If whenever u(E) = oo, E € M, then 3F c E, F € M such that u(F) < oo then u is called a
semi-finite measure.

Example 4. Consider a non-empty X, M =P(X), let f: X - [0,00]. Define:

wE) =3 f(x)

zeE
Clearly, u(@) =0. Also, countable additivity holds as sums are positive and can be rearranged.
o f=1 then u(E) “counts elements”.

o Let:
f(:c):{l if x =xg

0  otherwise
But, take A=[-1,1], B=[-2,2], X =R, x9 =0. Then:
n(Au B) # u(A) + n(B)
Example 5. Let X be an infinite set, M =P(X). Define:

w(E)=0 (if E is finite)
p(E) =00 (if E is infinite)

Claim. This is not a measure but is a finitely additive measure.

13



Example 6. Let X be an infinite set, and consider:

M ={E c X :E is countable or E° is countable}

Define:
0 if E countable

oo otherwise

u(E) ={

Ezercise: prove this is a measure.

Theorem 1. Let (X, M, 1) be a measure space. The following are true:
1. Monotonicity: if Ec F, Ee€ M,F e M. Then u(FE) < u(F).
2. Subadditivity: {E;} ¢ M then:

W(05) < i)
j=1
3. Continuinity from below: {E;} c M, Ey c E; c Esc ... Then:
M(U Ej) = lim p(Ej)
4. Continuity from above: {F;} c M, Fy > Fy> F3> ... Then:

u(ﬂ Fj) = lim p(F})
j=1 g=e

Proof.
L j(F) = (B 6 (F\E)) = u(E) + p(F\E) —> u(E) < u(F)
>0

2. Construct A; such that A; are pairwise disjoint and Jj2; 4; = U2, E;:

A1=E1
AQZEQ\EleQHEf

n-1 n-1 ¢
AnIEn\ UEz:Enn(UEz)

i=1 i=1

The {4;}$2, is clearly pairwise disjoint, A; € M Vi, and:

M(QEZ‘) :M(Glfh‘) = .OOIM(Ai)
< ,iM(Ei)

3. Ey =@. Define

A1:E1:E1\EO
AQZEQ\El

Ai = Ez N Ei—l

14



We can do this because the E; are nested. A; € M, A; pairwise disjoint. So:

8

p(Ei N Eioq)
1

K3

(u(Es) = p(Ei1))

=
Il

»—AMg

n

lim Y (u(E;) - w(Ei-1)) (telescopic sum)
n—oo 1

i=
lim p(En) - p(Ep)
lim p(Ey,)

n—oo

Fy

4. Fy o2 Fy o ..., define: B; = FFnFy. So Fy = B; u F; Vi, and we have:

=)+ ()

As we have a disjoint union for F}, we can say that

M(Fl):u(i@Fi)+u(GB,;) (*)

i=1
p(Fr) = p(Fy) + p(Bi) (**)
With some playing around and by use of the diagram, we can see that By c B, c B3 c ..., so
() = (Y + i () (by applying 3. on (¥) to 4 (U, Br)
i=1 1—>00

p(Fy) = lim p(F) + lim p(B;)

= lim p(F;) =p (ﬁlF)

71—>00

[
Definition 7. Let (X, M,u) be a measure space. If E € M satisfies u(E) =0, then we say that E is null.

Definition 8. If a statement about points in X is true for all x € X except for a set of measure 0, then we
say that the statement is true almost everywhere (a.e.).

Observation: u(E) =0 and F c E, then u(F) =0 provided F € M.
Definition 9. A measure whose domain (i.e M) contains every subset of every null set is called complete.

Example 7. Consider (R, M,u) where M are measurable sets and p = m*. Then “every point in R is
irrational” is true almost everywhere.

15



Theorem 2 (Solve lack of completeness of some measures). Let (X, M, u) be a measure space. Let:

N={EeM:pu(FE)=0}
M={EUF:EeM,FcN where N e N'}

Then M is a o-algebra, and there exists a unique extension fi of i to M.
Proof. We want to show firstly that M is closed under
1. Countable unions

2. Complements

1. Take A; e M. We want U2, A; € M. We can write A; as A; = F; U F; with E; e M, F; c N;, N; e N.

- () (2]

i=1

To show | J 4; € M, we need (U El) e M and (U FZ) c N with N € N' We know (U El) € M because
; i=1

i=1 i=1

M is a o-algebra. Define N := [ J N;, so (U FZ) c|JN;=NeM, because N; e M = N e M.
i=1 i=1 =1

We need p(N) =0, but u(N) <> pu(N;) =0s0o N eN
i=1
2. Weneed Ae M = A°e M. Let A=FEuF,Ee M,Fc N,NeN. wlog., EnN =@ (otherwise
take F'\ I, N \ I instead of I and N). Need (E'u F)¢ to be in M. We need to write £n F as EU I
with Ee M,Fc N eN.
Using En N = @, we can derive the identity:

EuF=(EuN)n(N°UF)

SO:
(EuUF)*=(EUN)°U(N°UF)°¢
——— ——
eM cNeN

We need (EUN)“e M and (NUF)“cQ,QeN.

As EENeM = (FEuUN)®e M. Also, (N°UF)¢=NnF¢c N, so by taking Q = N we have that
(N°UF) cQ,QeN

Having shown that M is a o-algebra, we want to now show there exists a unique fi. Given A € M,
assume A= E u F . This decomposition is not unique unfortunately. Define fi(A) := p(E). It is

— —
eM cNeN
trivial that & is an extension. Now w.t.s. i is well defined and unique. Assume A= F; U F} = Ex U Fy

where F1,Ey e M,Fy c Ny e N, F, c Ny e N. We need:

n(Er) = p(Ez)

By sandwiching A in-between two sets that are in M we have

121 C (122 U‘Pb) C IZé LJ]VQ
p(Er) < p(E2 0 No) < pu(E2) + pi(N2)
——
=0

So u(E1) < p(E2). By replacing 1 <> 2 we have u(E2) < u(Eq)

16



We've defined o-algebra and measure abstractly. How do you construct o-algebra?

Observation: an arbitrary intersection of o-algebra (in X) is a o-algebra.

Use of observation: Suppose E is a collection of sets in X. We can define M(E) as the “smallest” o-algebra
that contains F, where “smallest” is the intersection of all o-algebras. (M(F) exists because P(X) is a
o-algebra containing F')

Definition 10. (Borel o-algebra) The smallest o-algebra of X that contains the open sets is called the Borel
o-algebra, denoted Bx. What we constructed in Chapter 1 is bigger (the Lebesgue o-algebra).

Proposition 8. Let X =R using usual topology.
Br = M (open sets in R) Then

1. Bg = M(intervals (a,b))
2. Bz = M([a,b])
3. Br = M([a,b)) = M((a,b])
4. Br = M((a,00)) = M((-0,a))
5. Br = M([a,00)) = M((~00,a])
Proof. Exercise. O]

The motivation is that soon we will define measurable functions as “f~!(E) is measurable for all E which is
measurable” (analogously to continuous functions on open sets in topological spaces). Having the proposition
will simplify things. We will need f~1(G) for G in any of the smaller families.

2.1 Product spaces

How do you think of R?? R? or R x R? Let X, be non empty sets, a € A (in principle an uncountable index
set). Consider:

X = H Xa
aelA

Define 7, : X - X,,, where 7, is the projection onto the a co-ordinate. The product o-algebra on X is the
o- algebra generated by {7 '(E,): E, € M,}. This is denoted by:

& Ma

ael
(Need to check with lecturer)

Proposition 9. The product o-algebra we’ve just defined is also the o-algebra generated by:

[1 Ea (Ea € My)

aelA
provided A is countable.
Definition 11. A Banach space is separable if there exists a countable subset that is dense
Proposition 10. (About Borel sets) Let X1, ..., X,, be metric spaces.
n
X = H X; equipped with the product metric. Then
i=1
n
®ij c Bx
j=1

where if the X; are all separable sets then we have equality.

17



2.2 QOuter measures

We need to find a way to construct measures, so we have a definition.

Definition 12. An outer measure in a (non-empty) set X is a function p* : P(X) — [0, 00] that satisfies:
1. w(@)=0
2. If Ac B then u*(A) < p*(B)

r (G

Proposition 11. Let £ c P(X), X non empty, such that X e E,@ €. Let p: E - [0,00] be any function
such that p(@) = 0. Then define for Ae P(X):

w(A) :inf{ip(Ej) tEje& Ac GEJ}

j=1 j=1
This is an outer measure.

Proof. We need:

1. p*(@)=0.
Because p(@) =0, from the definition it follows that p* (@) = 0.

2. w*(A) < p*(B) whenever A c B.
This is trivial. Every cover of B is a cover of A. When you look at u*(A) you are taking the infimum
over a bigger set, so the result follows.

3. p” (DAz) < i/‘*(Ai)

Consider Ay. _By properties of infimum there exists {Ej ;} 32

521, where Ej, ; € € such that:

(o] . 8
> P(Exj) < ' (Ag) + ok (Ve >0)
=1

A c U B

J=1

and taking unions in k gives:

CS
C8

-J U

k k
(i.e. a countable cover of the set by elements in £). This implies:

Il
s

N*(DAI@) < i iP(Ek,j) < i( "(A) + of ) ZM (Ar) +
o= k=1j=1 k=1
By letting € — 0 we get the result.
O
Definition 13. Let X be non-empty, p* an outer measure. We say that A c X is measurable iff:
W(E) = w* (B0 A) +p* (B A°) (VE ¢ P(X))

Theorem 3. (Caratheodory) Let p* be an outer measure on a non-empty set X. Then the collection of
measurable sets, denoted by M is a o-algebra, and moreover the restriction of u* to M is a complete measure.

18



Proof. We want to show that:

1. M is a o-algebra i.e.:

a) M is closed under complements.

b) M is closed under countable unions.

2. p is a measure, i.e.:

a) (@) =0
b) p* (WU, A;) = Y2, 1n*(A;) , A; € M pairwise disjoint

3. p is complete.

1.

a) This is trivial from the definition (write A° instead of A).

b) We first show that M is an algebra, then M is closed under a countable disjoint union, which

implies from a previous proposition that M is a o-algebra.

Claim. M is an algebra. Consider A,B € M. We want Au B € M (by induction we can then
prove it for finite n (exercise)). We know that:

i (E) = 1 (B0 A) + i (B n A% (VE)
p(F) =p* (FnB)+p* (FnB°) (VF)
We want:
1 (B) = p* (B (AU B)) + 1 (En (AUB))

So by using the definition of A and B being measurable we have

p(E) =p (EnA)+p(EnA%)

=p " (EnNAnB)+u (ENAnB®)+u" (EnA°nB)+u* (En A°n B°)
——
=p*(En(AuB)©)

We want to show:
W (E) > w* (En(AUB)) + 5" (En (AUB)°)
so if:
wW(ENANB)+u* (EnAnB)+u*(EnA°nB) > u* (En(AuB))

then we’re done. By set theory, AuBc ((AnB)u(AnB°)u(A°nB)).

So En(AuB)c ((EnAnB)u(EnAnB)u(EnA°nE)), hence by properties of outer measure
we’ve shown A u B is measurable.

Assume AnB=g, A,BeM. Take E = Au B. As A is measurable:

p(E)=p"(E OUA) +p*(EnA°)
p*(AuB) =p*(A) +p*(B)

N N
By induction we can show that p* (U Ai) = > p*(4A;), with A; pairwise disjoint. Hence we have
i=1 i=1
shown that M is an algebra. To show it is a o-algebra, it is enough to show {A;}52,, A; pairwise
disjoint, A; e M = [JA4; e M

i=1
Let B = tJ44i713n = tJ‘4i

i=1 =1
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We know B, e M. We want B € M, i.e. u*(E)=p*(EnB)+p*(En B°). Since A; € M:
P (F) =p"(FnAp)+p' (Fn A7) (VF)

Take F=FEnB
" Details for the proof on the left

B,nA,=A,
wW(EnBy)=p"(EnB,nA,)+u* (EnB,nAS) (7-1 An)mAn =A,
=1 (EnAy) + (B Bosy) o

Bn n AfL = Bn_1
=p (EnAp)+p*(EnAy) +p*(EnBy_2) (inductively)

n-1
" u?:lAimAfl:(UAiuAn nA;
= Z‘LL*(EﬂAi) i=1
i=1 nol
= (AiﬁAfz)
=1 ——
=A,
B,cB
BnEM3,U,*(E):,U,*(EﬂBn)—f-/L*(EﬂB;) BCCBC
Cc n
>p (EnBy)+p (EnB°) (EnB®)c(EnBY)
— i(Eﬂ AZ) +/,L*(Em BC) ,LL* outer measure so
i=1 wW(EnBY)>u" (EnBy;)

LHS > RHS = LHS> lim RHS
—— —— n—o0
indep. of n dep. of n

p(E)2 Yy g (EnAy)+p* (En B°)
i=1
>pu (EnB)+p"(EnB°) (*) (Reason: EnBc | J(EnA;))
So 1 is complete.

2. a) Trivial.
b) Rewrite * for E = B:

o (QA) —1(B) = ZMBmAi) s (B Be) = iu*(BnAn - iwm

3. We require that if A € M, u*(A) =0 then for every W c A we have W € M. Take W c A € M. We want:
W (B) 2 p* (B0 W) + 1 (B n W) (VE)
EnWcEnAcA, so:
wW(EnW)<u (EnA)<up*(A4)=0

| S —
=0

So we need p*(E) > p*(EnW¢). This is trivial as EnW°¢c E .

e Mechanism for constructing o-algebra.
e We have a way (Caratheodory) to construct measures that come with a o-algebra.

Need a family £ and a family p
The outcome is that a measure and a o-measure of measurable sets.
In general M(&) is not the o-algebra of measurable sets!
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e In R, £ = open intervals - M(&) = Borel set.
What comes out of Caratheodory is strictly bigger. That o-algebra is called the Lebesgue o-algebra,
denoted by L
L is the completion of B

Theorem 4 (Describing all possible measures in R, Bg). If F: R - R is increasing, right continuous, then
there exists a unique Borel measure, pp that satisfies pr([a,b]) = F(b) - F(a) (If there exists another such
function G then G = F + constant). Conversely, if p is a measure in (R,Bg) that is finite on all bounded
sets then the function:

w((0,2])  if >0
F(z)=10 ifr=0
p([-2,0)) ifz<0

is increasing, right continuous, and pup = .
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3 Measurable Functions and Integration

Let f: X =Y, (X, M),(Y,N) be measurable spaces.

Definition 14. Given (X, M),(Y,N) measure spaces, X,Y # @, we say that f: X =Y is measurable iff
FFUE)e M VEeN.

Observation: the composition of measurable functions is measurable.

(X, M) ER (Y,N) L (Z,0) (M, N, O o-algebras in X,Y, Z respectively)

Exercise: Decide whether or not this is true for f: X - Y,

f(UEn):Uf(En) f_l(UEn):Uf_l(En)
f(mEn):mf(En) fil(mEn):mfil(En)
FE®) =(f(E))* FHUE) = (FUE)"

Proposition 12. Let (X, M), (Y,N) be measurable spaces, f: X - Y. Assume that N is generated by a
collection &, i.e. the smallest o-algebra M(&) = N containing & is N'. Then:

f is measurable (i.e. f Y (F)e MVYFeN) = f'(E)e MVEe¢
Proof.
. f is measurable by definition: f1(F)e M VF e N.

: Look at the collection of sets, G, for which f™}(G) e M. Let {G: f1(G) e M} = Q. First, £ c Q.
Now, ) is a og-algebra by *. N'= M(&) c Q.

O
Proposition 13 (Corollary). f: X - R. (X, M), (R,Bg). Then the following are equivalent:
a) f is measurable from (X, M) into (R, Bg)
b) [~ ((a,00)) e M Va
c) f7([a,00)) e M Va
d) f7H((-00,c)) e M Ve
e) [ ((=o00,c]) e M Ve

Corollary 1. Let X, Y be metric spaces, then every continuous function is measurable from (X,Bx) to

(Y, By).

Proof.
f continuous <= f~1(U) open YU open in Y’
FHU) open YU = f~1(U) is in B,YU open = f is measurable. O

For most of this course, Y =R or Y = C.

Definition 15. Given (X, M) measurable space with X + @ and f: X - R (or C), we say [ is (X, M)-
measurable if f is measurable from (X, M) to (R,Bgr) (or (C,Bc)).

Definition 16. Let f:R™ > R (or C). We say f is Borel measurable if f is measurable from (R", Bgn)
into (R, Br) (or (R,Bc)).

Definition 17. We say [ is Lebesgue measurable if f is measurable from (R™ L) into (R,Bg) (or
(C,Bc)), where L in R™ is the completion of Bgn.
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Remark 3. Composition of Borel measurable functions is Borel measurable but the composition of Lebesgue
measurable functions is not necessarily Lebesque measurable!

Example 8. Let R 5 R L. R. Consider (fog) M (E).
e Clear that E Borel, f and g Borel measurable, then f~1(E) Borel=—= ¢ '(f *(E)) Borel.

e But if f,g Lebesgue measurable then E Borel == f~(E) is Lebesque = ¢ *(f 1 (F)) not necessarily

Lebesgue.
If f Borel, g Lebesgue, then f o g is Lebesgue.

Proposition 14. Let (X,M), f: X > R, g: X - R. If f,g are measurable, then |f|, f+ g, min(f,g),
max (f,g), f-g are measurable. So is cf for ceR.

Proof. By previous proposition, only need to check f~! for a family that generates Bg.

f+g:

cf:

|f1:

min (f, g):
max (f,g):
Nk

FHE)eM
g (E)eM
(f+9) " ((a,00)) = U({f>r}n{g>a-r})

reQ
(Notation: {f>r}=f1((r,00)) ={x: f(x)>r})

Therefore, f + g measurable as it is a countable union of measurable sets.

If ¢=0:
X ifa<0

g otherwise

(cf)((a,00)) :{

Ife>o:
() (o)) = {ef > a} = {5 %]
(IfD7((a,00)) ={f > a} u{f < -a}
{min(f,g) >a} ={f>a}n{g>a}
{max(f,9) >a} ={f>a}u{g>a}
Show f? is measurable (exercise).

(f+9)°-1*-g°

(f+9)?=f+g*+2f-g — f-g= 5

(VE € BR)
(VE € Bg)

O

Proposition 15. Let f; : X > Ru{-o00,00}, f; measurable. Then sup, f; and inf; f; are measurable. So
are liminf; . f;, limsup;_, fj, and lim;_« f;.

Proof.

{iljlf fi< a} = pl{fj <a}

{Sup fi> a} = Q{fj >a}

J

liminf f; = supinf f;
Jj—oo k J2k

limsup f; = i%f sup f;

Jj—oo jzk
lim f; = liminf f; = limsup f;

23
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Alternate proof. Let f:=1lim;_ e f;

rrap-0 0 N {foer )

m=1 N=1n=N
O

Remark 4. We need not define a measure to talk about measurable functions (like continuous functions in
topology).

3.1 Devil’s staircase

1 1
3 3
4 4
1 1
2 2
1 1
4 4
o 1 2 1 2 1 8 1 0 1 2 1 2 1 8 1
9 9 3 3 9 9 9 9 3 3 9 9
fi fa

This procedure provides {f,,}22,. Let f :=lim,_ o fn. fn are continuous and uniformly continuous (exercise).
Properties:

. 7(0)=0, F(1)=1.
e f’ exists on every open interval we remove (and equals 0).
1
o (1) - F(0) % f;' f'(x) d.
e The derivative is 0 on a set of measure 1.
e f(Cantor set C') has measure 1. f(complement of C') c {5+ :c€{0,1,...,2"}} c Q, so has measure 0.

e Except for the points {57} the function has an inverse. Let z € [0,1] be written in base 3 as:

X E
(E:Z?Z (66{07172})
n=1
Cantor set points are where ¢, € {0,2} Vn. Then:
£e) %Z?:l% ifxeC
€T =
unique constant such that f is continuous otherwise
As for the inverse of f (call it g), write:
€
y= Z 272 (En =0, 1)
n=1
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Now:

[e}

9(y) = . 2

n=1 3"

(for y # {5%})

g maps [0,1]\ {55} into the Cantor set. g(E) c C so it is measurable. g~'(g(E)) = E, so the inverse
—_——
Inside is a measurable set, say E.

of a measurable set g(E) is not measurable (g, which arose as the inverse of a continuous function, is
not Borel measurable).

3.2 Integration for f: X — [0, 0]

Definition 18. Let (X, M) be a measurable space. x g is a characteristic function (indicator function)
if:

1 ifxekE

XE(I):{O if v € B°

Definition 19. A function f is simple if it takes finitely many values. i.e. if AN € N and Fq,..., Exy ¢ X
such that f(x) = Zé\il a;xg,(z).

Definition 20. f: X - R (or C) is simple measurable if 3N € N, {E;,...., Ex} ¢ M such that f =
Zé'\il OéjXEj'

Definition 21. For a simple function f we say it is written in standard form if E; = f’l(aj).

T S—
3T JF(x) = Ixp017 +4x(1,2) + 1X[2,3]
) = 1x[0,3] +3Xx(1,2)
= 1x[0,1u[2,3] + 4X(1,2)
1 ] ! ] standard form
0 1 2 3

Theorem 5. Let (X, M) be a measurable space, f: (X, M) - (R,Bg) for R=RuU{zoo}
a) If f: X - [0, c0] measurable, then there is a sequence {¢;}2, of simple measurable functions such that:
0<p1<pa<...<f

and such that lim;_., ¢;(z) = f(z) Ya € X. Moreover, ¢; — f uniformly on any subset where f is
bounded.

b) If f+ X = R (or C) is measurable, then there is a sequence {¢;}52, of measurable simple functions
such that:

0<|d1] < 2| < ... < |f]

and such that lim;_ . ¢;(x) = f(x) Vo € X. Moreover, ¢; - f uniformly on any subset where f is
bounded.

Notation:
e ¢; 3 f means ¢; converges to f uniformly.

e a.c. means almost everywhere.
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Proof.
a) For n=1,2,..., define:

kE k+1
EF = ‘1([— )) k=01,.. 221
n f 27’7,7 277, ( b b b )

Fy = [71([2", 00))
Then Eﬁ, F,, c X. Define:

92n_q

b=, JnXEE T 2"xF,
k=0

Claim.

b ¢]S¢J+13fv Vj:1,27...
e ¢, > f, 93 f on f bounded.

271

k+1
271

H 1 1 1
Er F, E* F,

3

b) f: X - R (or C). Define:
f = max{f,0}
[~ =max{-f,0}

Now, f*+f~=|fland f* - f~ = f, f* and f~ are measurable, f*, f~: X —[0,00]. To each one, apply

part a) to get {&} },{#,}. Define ¢, = ¢ —¢,.. For f: X - C, f =R(f)+iI(f) with R(f),T(f): X >R
and apply the real case to each.

O

Proposition 16. Let (X, M,v), v complete, f : X - R (or C) be a measurable function (Bg or Bc). If
g=f a.e. then g is measurable.

Proposition 17. Let (X, M,v), v complete, f, - f a.e. with f, measurable. Then f is also measurable.

26



Define:
L:={f:f:X —>][0,00], fis measurable}

Let (X, M,v) and f € L*, then:

N
[ fdvi=>" apv(Ag)
k=1

For f =Y+, arxa, in standard representation. Also, for A measurable:

fAde::fde

simple

Proposition 18. The integral of a simple function f = Z{V an1a, where A, are disjoint is [ fdp:=Y anpA,.
Proof. See Notes from Jose. O
Proposition 19. If f = ¥\ b;1g,, then [ fdu=Yb;1p,

Proof. Let the measurable sets {Cj;c[n1} be the unique coarsest partition of U B; such that for any j € [N],
we can write each nonempty B; as a dlsJ01nt union of Cj.
For each i, let I(7) be the unique indexing set such that j € I(¢) iff C; c B;. Thus by construction,

|_| C; =B;
i:jel (2)
And also
N M
- S E( 2 e
j=1 i=1 \jel (i)
Then

M N N
ffd/FZ( > bj)u(cn:m > u(C) = Y bu(By)

J=1 el (i) j=1
Proposition 20. Let fe L, [ = 2%1 bjxB;, not necessarily in standard form, then:
M
f fdv =73 b;v(B;)
j=1

Proof. Let f = ZkN=1 arXxA, in standard form.

N
[ rar= 3 awan)

Assume one ay =0 and one of b; =0, so that:

Cz=

Ar=X=UB

k=1 j=1

{B;} may not be disjoint, but we know {A;} are.

CZ

Bj=B;,nX = Bn((vj ): (B; nAg)

k=1
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Therefore:

M

Z v(B;) = Zbu(UB mAk)

j=1

bjU(Bj n Ak)

INg S
M=

j=1k=1
M N

= Z Z akv(Bj n Ak)
j=1k=1

M
aj Z I/(Bj n Ak)

j=

M=

=
Il

=
=

Assume for now that {B;} are pairwise disjoint, then:

ak,u(Ak n B )

M=
Mz

N
/ fdp=7" arp(Ar)
k=1

e
Il
—
<.
Il
—

Mz
M=

bjM(Ak nB; )

<.
Il
—_

>~
I
[

Mz

i1(Bj)

<.
I

The proof pauses here.
Proposition 21. Let ¢,1 be measurable, simple, nonnegative, then:
1. [cepdu=c[ ¢pdu (c>0)
2. [d+ibdp= [ pdu+ [dp
3. If o(z) <y(x) Vo e X then [ ¢du< [ dpu.
4. Fiz ¢, then the map A~ [, ¢dp is a measure VAe M. Call it v.
Proof.

1. Trivial as c¢ is simple. So [ ¢du = YN arpp(Ag) in standard form. Then:
N N
[ etdn= Y carp(a) = e Y an(a) = [ ¢du
k=1 k=1
2. Assume:

¢= Zk 10X Ay

}m standard form
’(/} = Z_]:l ijBJ
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and assume (5 | Ay = X = Ué'\/il B;:

N M
[ odu+ [wdu=3 awu(a) + Y bu(B;)
k=1 j=1

M=

M M N
aku(Ak n U Bj) + Z bj (Bj n U Ak)
j=1 j=1 k=1

T
i

M=
Q

ku(LA'ﬁ(Ak mBj)) + %bﬂi(@(% r‘Ak))

j=1 j=1 k=1

ks
I
=

M=
Mz

M N
ak,u(Ak n B]) + Z Z bj/L(Bj N Ak)
j=1k=1

k=1j=1
M N
= > (ag +bj)u(Ay n Bj)
Jj=1k=1
Now:
N N N N M
¢ = z XA, = Z akXAknuj.‘il B; = z akXUﬁl(AknBj) = Z Qg Z XArnB;

k=1 k=1 k=1 k=1  j=1

M M M
Y= Z bjxB; = ijXBjnuszlAk = Z ijugyzl(AknB_j) =
j=1 j=1 j=1
M N
— ¢+1¥ =) > (ar+b;)XA.nB,
j=1k=1
So [¢du~+ [du=[¢+1pdp.

Back to our original proof for a bit:

Proof. Let ¢ = 23;1 ciXE; be measurable simple. Let:

¢:¢1+¢2+"'+¢)T

where ¢; = ¢;x g, is in standard form. Then:
[odu=[orsdas vordu= [érdu+..+ [ ordp

T

=3 [ dsdn
i=1
T

=ZcifxE,- du
i=1
T

= Z;cm(Ei)

Back to the proof of the proposition:
Proof.
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3. ¢(x) = Loy apxa, and ¥(z) = Z;-\Zl bjxp, in standard form, Uy, Ay = X = U%l B;. From previous
argument:

akXAkﬁB

=
&

Il
M=
Mz

T
—_
.
I
—

M=
Mz

P(x) =

b]XAkﬁB

B
I

—
<.
I

—

{Aj n B;} are pairwise disjoint. Consider = € Ay n B; # & for some 4, j.

(7) = ag,P(x) =b; = a) <b;

So: M N M M
f¢du=22 arp(AknBy) € Y Y bin(Aen By) = [ wdy
j=1k=1 k=1j=1
4. Need:
e v(2)=0

o v(UiZy Ai) = X2 v(Ai)
Where A = J;2; A;. Write ¢ = Z;‘Zl bjx s, standard form with U;V:[l B;=X.

M
[ odu= [ oxadu= [ 3 bxu,xadn
j=1
M
=[ijXBjnAdM
j=1

M
= Y bu(B;n A)
j=1

M o M oo
bj/,L (Bj n UAl) = Zlb]M(L;Jl(BJ ﬂAi))

i=1

<.
1]
=

e =1

<
Il
[

b; lim M(U(Bj n Ai))

i=1

Mz iz

bj r%l_I)?{()lQ ;M(Bj n Al)

<
Il
Jy

NgH
HMS

bjn(B;n A;)

~.
I
[

j=1

= [Zb]XB nA, dpt
j=1

=1

8

8

- [Zb]xB Xa, du
7j=1

=1

= fcbdu ZV(A)

=1

8
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Define £* = {f: f is measurable and non-negative}. Then we define [ f dp := sup{ [ ¢ du : ¢ simple measurable, 0 <
¢<f}

/fdugfgdu (if f<g, fLgeLT)
fcfdu:cffdu (for ¢ > 0)

But we don’t know that [ f+gdu= [ fdu+ [gdu

Theorem 6 (Monotone convergence). Let (X, M, p) be a measure space, {fn}or, c L. If fr, < fne1 Vn,

then:
im [ fodu-= f lim f, dy

n—o0

Proof. First, lim,,_.. f, exists as (f,,) is a monotone sequence in R* and measurable by an earlier theorem.
)

fm < lim f, = /fmd,usf lim f,du (Ym eN)

Take limits to get:
lim [ fodp< f lim f, dp

M —> 00

Fix ¢ as a simple measurable function:
0<op< f=lim f,

Fix a € (0,1). Define E,, = {x € X : f,(2) > a¢(z)}. Claim that U;>; E, = X (because f,(z) ~ f(z) and
ap(x) < f(z) for f(x) #0). Consider:

limf (bdu:[qﬁdu
Nn—> 00 En X

Jim V(En);y(['j En) ~ (X))

B n=1
by continuity

(With vertical equals signs to add)

We know:
[ asdus [ pudns [ pudps [ foodpstim [ fodn
E, E, X X n—oo J X
Thus:
tim [ agdps limffndu
So:

Tim fnduzfmﬁdu
:JLHQO fnduZSip{faqﬁdlu:quﬁsf}
:/afdu
=affdu
= giggoffndMZSgp{affdu}

- [ tdn

Example 9 (Counterexamples). Let:
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4 fn = X[n,n+1]» fn(m) -0 V.
® gn :nX((),%)r gn(x) -0 V.
[fa=1and [ g,=1VYn, but [ f=0and [g=0.

The monotone convergence theorem (MCT) implies we do not need to take the supremum over all 0 < ¢ < f
in the definition of [ fdu. It’s enough to take one family {¢, }5; of simple measurable functions such that

0 < ¢n < Ppy1 and ¢n(x) - f(LL') Va.
MCT — Tim [ dudp= [ lm éudu= [ fdu

Recall that we proved a theorem that shows the existence of at least one such family {¢,}oo;.

Theorem 7. (X, M,pu), {fn}, c LY then:

J 2 tein=3 [ fudn

(this proves that [ f+gdu= [ fdu+ [ gdu)
Proof. Take:
o {¢n )2, measurable simple, 0 < ¢, < Ppi1 Y1, ¢ ~ f.
o (Y}, measurable simple, 0 < v, < pi1 Y, Y, 7 g.
We know, by the MCT:
R
Jim [ wnd= [ gdy

Also, ¢+, 7 f+ g, so:
tim [ G+ vn)du= [ (/+g)du

f¢n+¢ndﬂ: f¢ndﬂ+[wndﬂ
So now just need to check:

lim ([@de/wndu): lim f¢ndu+ lim [Q/Jndu
n—00 n—>00 n—oo

As everything is non-negative, it is true by Analysis 1. So, by induction:

[inwiifnw

We also know that:

Let gn = XN fudu. We have:
fn20 = gn <gna

and:

gN Z fn
n=1

32



By MCT:

J i ov = i, [ o

oo N
— lefndu ]\}iinfz;lfndu

N
- Jim 3 [ e

nilffndu

Theorem 8. (X, M,u), fe L. Then:
/fduzO«:»f:O a.e.

Proof. Notice that the statement is trivial, for measurable simple functions ¢ = Zf:lzl anXE,, o >0, as we
know:

N
[ (bdu = Z_:lanﬂ(En)

and:
N
Y anp(Ey) =0 ¢=0ae.
k=1
as:
N
> anp(Ey) =0 <= ayu(E,) =0 (Vne{l,..,N})
k=1
<= either a,, =0 or u(F,)=0 (Vne{l,..,N})

So {x: ¢(x) # 0} is a finite union of sets of measure 0. Now we look at general f e L*.
/ fdup =sup {f pdu:0< o< f, ¢ simple measurable}
Suppose:

f=0ae. = V¢ < f measurable simple, we have ¢ =0 a.e.
= for those ¢, [ ¢pdp=0 (exercise)

— ffdu:sup{()}:()

Next, want to show [ fdu=0 = f=0 a.e.

Look at: - .

@ @=0y=U{rz ]

E,
Then: ) ) .
ffdusz deZfE adl‘:fﬁXEnd/J:E/i(En)
. n .

= p(En) =0
= p({z: f(2) #0}) <Eol w(En) =0 O
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Corollary 2. {f.}>, c L, fn < fn+1 a.e. Then:

flim fndp = lim [fndu
n—oo n—o0o

(By limy,, 0 fr, we mean the lim, . f(x) where it exists and 0 otherwise)

Proof. f, » fin E with u(E€) =0.

[ twdun= [ fudp
[ rdu= [ fau

/fdu:ffdu:f im fnduzlimffnduzlimffndu
E E E

=/ liMy—oo frn dp

Warning: in general, we do not have:

lim fnd,u:f lim f, du

n—00

but...

Lemma 2 (Fatou’s Lemma). Let {f,}22, c L, (X, M, pu), then:
f liminf f, du < lim inf / Frdu
Proof. Recall liminf,, e =supy infy,sp frn. infusp fr < fj for every j >k, which implies:
fgzlgfndus ffj dp
(Let gx = inf,5 fn, then gx monotone increasing)
J ing ninsing [ gia
tim [ gedp< lim inf [ f,
dn J o< g nl ) Jade
- < Tim i _
i J i inf < Jim inf [ 5

— [ liminf f,, du < liminf[ fndu
Corollary 3. (X, M, u), {fn}or, c L, assume limy, o fn = f a.e. Then:

/fd,usliminf/fnd,u

Proof. Exercise.
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3.3 Integration for general f: X - Ru{zoco}

Definition 22. Let f: X - Ru{xoo} measurable, f = f*— f~ with f*,f~ >0. Then assuming at most one
of [ frdu, [ f~du is infinite, we define:

[ ran= [ £ du- [ 5 dn
Definition 23. We say [ is integrable iff [ f*du and [ f~ dp are finite. This is equivalent to [ |f|du < oo.

Proposition 22. The space of integrable functions is a vector space. The integral is a linear functional in
that vector space.

Proof. If f, g are integrable then af + bg integrable VYa,b e R. As |af + bg| < |a]|f] + |b]|g|, we have:

[ g +bgldu< [ lallfidu+ [ pllgldr
~lal [ £1du-+1bl [ lgldn < oo

A functional is a map from a space of functions to R (or C). So define:

10)= [ fau
We need:
1. I(af) =al(f)
2. I(f+9)=1(f)+1(9)
1.
1af) = [ afdn (a€R)

- [ du- [(af) du
There are three cases to this:

Case 1. a =0, then trivial as both sides are null.
Case 2. a >0, then (af)* =a(f)* and (af)” =a(f)”, which implies:

1af)= [ af*du- [ af dn
:a[f+du—a[f_du
~a [ fdn

Case 3. a < 0, exercise.
2. Let h=f+g. Then:
f=r-f
9=9"-9
h=h"-h"=f"~f +g"-g
R MW+ f +g =f+g"+h
— ]Vf+f’+ydu:/iﬁ+g++ﬁdu
- f h*dp+ f S du+ f g du= f frdu+ f g du+ [ h™du  (as everything is positive)

— [rrdu= [ wdu= [ rrap- [ rdus [ gtdu- [ g dn
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Remark 5. For f: X - C, define:

[ fdu= [ R()duri [3(5)d

Then, as long as everything is finite, everything translates to the complex case.

Notation: (X, M, i), we define £}(X, M, ) (ak.a. £} (n) or £L1(X)) to be the space of integrable functions
(f 1fldp < o).

Proposition 23. (X, M,u), f: X >R (or C):

|/ ran

S/Wﬂdu

Proof.
(R)

‘ffdu‘:‘ffdu—ff_du < [ rraus [ rdu= [ rdu= 1 rlan

triangle inequality

(C) First, if [ fdp =0 then nothing to prove, so assume [ fdu #0 and define:

[ fdp
|J fdul

o =

Observe:

(ffd)ffd
[ I;fdulu o i

and | [ fdu| € Ry, so:

sl f (s f 1)
o foral

= f R(af)du (definition of complex integral)
= ‘f R(af) du‘ (as it’s in R,)
< f R (af)|du (by above)

é[lafldu

Proposition 24. Let fe L£!:
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a) {z: f(x) #0} is o-finite and {x: f(x) € {xo0}} has measure 0.

b) Let f,ge L', then:

LfduzﬂgduVEEM@f|f_g|dN:0<:>f:ga.e.

Definition 24. A set is o-finite if we can write it as a countable union of sets that have finite measure.

Proof of proposition.

a) We only do the real case: w.l.o.g. assume f is non-negative (otherwise do same thing for f* and f7):

f:X > [0,00] = {f¢0}={f>0}:g{f>%}

Need to check that p({f > %}) < co. We use Chebychev’s inequality:

1 1 1
°°>ffdM2ffX{f%}dMZ_[ﬁX{f>%}dM:EM({f>E})

The second part is an exercise.

Assume f = g a.e. Therefore:

f-g=0ae. = |f-g|=0ae — f|f—g|d,u:0
——
non-negative

by earlier proof of nonnegative case. Now, assume [ |f - g|du = 0. Then:

’[Efdﬂ‘f,igd/":’/]af—gdu S[EIf—glduéflf—gldwO — /Efdu=ngdu

Now, assume [, fdu= [, gdp VE and f,g: X - R. Note:
{(f#9t={f-9>0tu{g-f>0}
So enough to show {f — g > 0} has measure 0. Let:

E={f-9>0}=(f - 9)7'((0,00])

so F is measurable

For this E we have [, f —gdu=0.
° 1
E={f-g>0}= U{f—g>f}
n=1 n
For contradiction, assume p(E) > 0:

u({f—w%}) 2 p(E) >0

Which implies In such that u({f - g > %}) > 0. Therefore:

1 1 1
—dsf —dz[ d:f({—>—})>0
fEf gdp {f_g%}f gdp ooty p= f-g -

So f=g a.e.
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We have £!, the space of measurable functions such that [ |f] < oo. Try to define a norm:

I171= [ \fldn

Would hope for:
o [fI20,[fl=0=f=0
“the bit that fails
o [Af=IAIF] for AeR
o If+gl<Ifl+lgl

How to fix the first property? We define an equivalence relation:

fr~g<=[=gae.

Define:
L'=L'/~ (Note: [0] = [xql)
Now, L' is a metric space. We define:
[f1+1g] =1 +9]
AT =[Af]
In L', we can define:
1A = [ 11
well defined by a previous theorem
Notation: we generally ignore the square brackets for practical purposes.
Theorem 9 (Dominated Convergence Theorem). Let {f,}2,, fn € L' such that:
a) fn— [ ae.
b) 3ge L' such that 0 <|f,|<g Vn. Then:
Tim [ fodp= [ lim f, dp
Proof. |fo]|<g = g-fn20and f, +g20
Then apply Fatou’s Lemma, which is:
f liminf h,, dp < liminf [ A, dup
for h, > 0.
- f lim (g - fn)dp < liminf /(g — fn)du (as the limit exists)
and f lim (g+fn)du£liminf[(g+fn)d,u
— fg— lim fndusliminf([gd,u—[fndu)
n— 00 n—oo
and fg+ lim fndusliminf(fgdu+ffndu)
= / gdu - [ fdp< / gdp —limsup f frdp (liminf, e (-a,) = -limsup,,_, . (an))
fgdu+/fdu£ fgdu+liminfffnd,u
n—oo
- limsup[fn dp < ffdusliminfffndu
- [fdu:lim [fnd,u
O
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Theorem 10. {f;}32, c L', assume Yoo [ | fnldp < 0o. Then Y52, f; converges a.e. Moreover:

Z fieL! (ie. [1X52 fildp < o0)

and: - -
S [ dwdn= [ 3

Proof. By the monotone convergence theorem:

o 3 du = 3 d
>k§=:1f|fk| [ f};lfkl 1

since:

/Z|fk|du<oo — Z|fk|<ooae.
k=1 —

proposmon

Next, define hy = ¥F_, f,. We want that lim_, o [ hidp = [ limg_co by dpp. Notice:

hy| =

an

n=1

< Z |fn|< zjl|fn|<°°
n=

eLt

So, by the dominated convergence theorem:

lim by de = lim f hy dys

Theorem 11. L' is complete.

Proof. Need to show that if {f,}°2; is Cauchy then 3f € L! such that f,, — f.

— ——
1. 2.

1. Assume w.l.o.g. that f; =0
fo—fi=fa-—foaatfoa-—.+fo- N
So:
n-1
fn= Z fis1—f;

Assume (by taking a subsequence) that | fn41 — full < 57 Denote g; == fjs1 — f;. Look at:

(o] [ee] oo (C_:
> [laldns Y lfm -l <Y o ==
j=1 =1 j=1

By previous theorem:

(o] (o]
Z gj <0 a.e. = Z fj+1 - f] < o0 a.e.
j=1 j=1

Define: f:=372 fjs1 - fj and fe L' by theorem.
2. (Want |f - fn] > 0asn—>oo)

”f_an: _fj

oo n-1
(Z:lfjﬂ _fj) - (Z;fjﬂ —fj)

oo o0 E
<Y =il < X % <
j=1 Jrast
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Proposition 25 (Simple functions are dense in L1). Let f € L*(X, M, ), then Ve >0 3¢ simple measurable
such that:

17 =0l = [ 1f - oldu<e

If X =R, u the Lebesgue measure, then ¢ can be taken as ¢ = Z;-V:l a;Xg; where Ej; are open intervals.
Moreover, 3g continuous such that [ |f - gldu<e.

Proof. If f: X - [0,00] and 3¢,, simple measurable such that:

0<p1<pa<n <Py <. < f
(Want to show that [ |f — ¢,|du — 0) Let hy, := f — ¢,. Then:

in| <1f]+ |¢nl < 2|1
By DCT:
T}ilgofhnduzfgiigoh,Lduszduzo
In general case we know f: X - R (or C). We know:
0<|én] <lgof <. <] < < S|
Let hy, = |f = ¢nl, then hy, < |f|+ |¢n| < 2|f| and so limy,eo [ By dp = 0 by DCT. Now, a sketch of the

“moreover” statement. X =R, p = Lebesgue. Ve 3¢, measurable such that [ |f - ¢,|du < 165+ Suppose

On, = ij\il a;x4,- Since A; is measurable we know 3o open such that 1i(o; \ A;) < 775w and 0 > A;. Then

fn=Y ajXo, [ 10— &;| is very small. In R every open set is the union of open intervals. So:

oj = L];Jjj,k (for I 5, open interval)

Since p(o;) < o0 = (I, k) %x Define &; = Up; I; 5 we can make u(o; \ &;) very small. Define

&; =Y ajXa, (need to check [ |f-Gndp<el|). [|f—0n+0n -Gy +Gy —Gnldu (then use triangle inequality).
g continuous such that [ |, —gldu <e. O

Theorem 12. Let (X, M,pn), f: X x[a,b] >R (or C), z€ X, t €[a,b]. Assume f(z,t) is integrable w.r.t.
x Vt. Define F(t) = [y f(z,t)dp.

a) Assume 3g € L' (X, M, 1), g >0 such that |f(x,t)| < g(x) and limyq, f(x,t) = f(z,t9). Then:

lim F(t) = F(to)

b) Suppose %(z,t) exists and 3h € L' such that |%(x,t)| <h(zx). Then:

F(t)= [ 9t an

Proof.

a) Define f,(z) = f(z,t,) for some {t,}:>, such that ¢, - to. Then we have a sequence {f,}o>; on X
such that f, € L'. Moreover, |f,(x)| < g(z) so by DCT:

f lim f,dy = lim f Frdu
X n—oo n—oo JX
Which implies:
F(to) = [ f(ato)dp=lim [ fo,ta)dpo= lim F(tn)
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b) Define %(:&to) =1lim,, o0 () where:

f(x,tn) = f(z,t0)
tn —to

hn(z) =

and t,, - to. |hn(2)| < h(x), so apply DCT.

Theorem 13. Let f:[a,b] > R.
a) If f is Riemann integrable then it is Lebesque integrable (and the two values are the same).

b) f is Riemann integrable iff {x : f(x) is discontinuous at x} has Lebesgue measure 0.

3.4 Different modes of convergence
Let {fn}:zozlv Jn: X >R (01“ C)

1. Uniform convergence:

Ve >0 3N, st |fu(z) = fm(2)|<e Vmyn> N Vz

2. Pointwise convergence:

Va Ve >0 AN () st |fu(z) — fm(x)|<e Vn,m > N

3. a.e. convergence:
(Pointwise convergence except on a set of measure 0)

4. L, convergence:
Ve >0 3N s.t. [|fn—fm|du<£ Vn,m>N

5. Convergence in measure:

Ve>0 p({ze X :|fn(z) - fm(x)|>€}) >0 as n,m — oo

Proposition 26. L! = measure.

Proof. We have:
[ 1a=fldu~0
(Want that Ve >0, p({z:|fn - f|>€}) >0 as n > o)

0« n— d 2> n — d > du = Nn —
Sl flduz [ fldpz [ edi=cu(ie 1 S )

So p({z:|fn—f|l>€}) > 0asn— . O
Proposition 27. Uniform == measure

Proof. Ye >0 3N s.t. |fo(2) - f(x)| <€ for n > N Vz (want p({z : |fn(z) - f(z)| >€}) - 0). Forn > N,
{z:]fuz) - f(2)[ >} = 2. O

Example 10 (Showing pointwise =5 measure). Consider f,(x) = X[nn+1]- fo(z) =0 Vn>x+1, s0 fr, =0
pointwise but pu({z: |fu(z) -0 > 1}) = pu([m,n +1]) = 1 Vn,
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Example 11 (Showing uniform =/ L'). Consider f,(z) = *x[0,n]- Sup$eR|%X[on -0/ = 5 - 0, therefore
fn = 0 uniformly.
1
[ 1x
n

Example 12 (Showing L' =k a.e.). Construct a sequence as fi = X(0,1) f2 = X(
fashion until the positive end of the interval is greater than 1, such as in f3 =X
define fs = X(0,2) f5= X(L,241); and so on. We have:

1
- 0|du <
flf |dp —

So {fn}3, converges to 0 in L', but it doesnt convergence to 0 a.e. Let x € (0,1). For every n, fn(z) =1
for some N >n, so f,(z) 40 Vze(0,1).

Theorem 14. Let {f,}>, c L'. Assume f, is Cauchy in measure. Then 3f such that f, converges to f
in measure. Furthermore, there is a subsequence { fn, }pey such that fn, — f a.e. Moreover, if f, converges
in measure to g then g = f a.e.

Proof. We know Ve > 0 u({z : |fu(z) = fm(x)] > €}) = 0 as myn — oo. ie. Ve >0 Vd>0 IN st. p({z:
|fn(2) = fm(z)| >€}) <6 ¥Ym,n > N. Choose ¢ = 55, § = . Then IN; s.t. u({z: |fu(2) = fm(2)|> 5 }) < 5
for all m,n > Nj;. Define g; := fy, (want to show g;(x) converges to something). So:

i({r+ 1@ - ga@l> 55 }) <

1
[O,n]—O‘ duznﬁ=1 (Vn)

), continuing in this

11,1

27 2 3

1,1 1,1,1y= 5 13 S0 we
3+5.3+5+D) T X3 18)

-0

Ej
Define: -
= U E;
j=k
F}. points where we shouldn’t hope for convergence.
oo oo 1
u(Fy) < 3 u(Ey) 22*_27
ik =k

What happens outside Fj,? Take x ¢ Fy, look at |g;(z) — g;(x)|. w.lo.g. assume j >i:
195 (@) = 9i(@)] =1g; (%) = gj-1(x) + gj1(x) = ... + gir1 (@) - gi ()]
j-1
<l (@) - gi(@)]
1=i

Remember x ¢ Fy, so take 4,5 > k, then:

lgj () — gi(2)] <

This means {g;(z)}32, is a Cauchy sequence in R. Define f(z) to be the limit of g,,(z) as n — oo for x ¢ Fj.
We have now defined f(z) for « € Ff for every k. So we have f(x) for z € U2, (F). We now need only
define f for z € (Up21 (FF))°, but (Us2, (FE)) = N5y Fi. Notice that:

u(ﬁFQSMGHS;,Zzu(ﬁFg=O

k=1 k=1
So define f to be anything you like in N;Z; Fx. Thus we have shown that there is a subsequence {fy,}72;

such that f,, — f a.e. Next, want to show f, - f in measure. We know |g;(z) - gi(2)| < 2 for = ¢ Fy,
j 214> k. Taking limits as j - oo (they exist by above):

2
lim |g;(2) - gi(2)] < (for @ ¢ Fy, i> k)
J—>o00

£@) - i) < o (for 2 ¢ Fy, i3 k)
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We know pu({z :|g;(x) - f(2)| > &}) < u(F). Given € >0 choose j such that 2 <e:

J

i((o Loy (@) - £@) > ) < ({o 51y (@) - £@)|> 57| ) < )
Letting j = k gives: )
p{w:1g; (@) = f(2)] > e}) < pu(Fy) < 55 =0 (as j — o0)
So far we’ve only shown g; converges to f in measure, not that f, converges to f in measure. So:
{z:1fn(@) - f(@)] > e} = {z:|fu() - 9:(2) + gi(2) - f(z)| > €}
< (fo: 1@ -a@l> Soleln@ - r@i> 5 )
— (e lf@ - F@)> D ({1 - fn @) 5 vu(fo i@ - f@1> 5)

Theorem hypothesis that -0 as i—oo as shown
fn Cauchy in measure

Finally, uniqueness, let there be two, f and g, then:

u({w s |fu(@) - F(@)] > }) >0 (as n o)
u({a :lgn(@) - 9(2)| > €}) ~ 0 (as 1 o)
But:
{z:|f-gl>et={z:[f - fut fn—gl>e}
e ({os1r-2ul> Spo{eslr-al> 5})
— utosls =gl > e <u({zs1r - gl > 5f) + ({100 -0l> 5})
LHS < T}glolo RHS =0

— u({z:1f - gl>=}) =0

So:

@i reap=0{o:lr-91> 5}
u({x:fig})s7iu({x:|f—gl>;})=20=0 — f-gae

Corollary 4. If {f,}2, c L' is Cauchy in L', then there is a subsequence fn; = [ ae.

Theorem 15 (Egorov). Let f: X - R, u(X) < oo, fr,: X >R and f, > f a.e. Then Ve >0 there is a set
E with u(E) < e such that f, 3 f on E°.

Proof. w.l.o.g. f, - f Yz (add to E the set where you don’t converge). Define:

oo

)= U {10 - 1@ > 1
Notice Ep(k) 2 Ens1 (k) with & fixed:
lim En(k) = () En(k) =@
n—o0 n=1

43



and:
H(EL(K)) < p(X) < o0
So:

u(ﬁ Enuc)) ~ ln u(B ()

=u(2)=0

So Yk, given € > 0 In(k) (i.e. n depending on k) such that u(E,x)(k)) < 5z. Define:

E = E,u)(k)
P

Then: - -
P € 32 p(Bugy () < 3 o =
(Need to show f, 3 f on E°)
O(En(k) k)¢

So:
re B = xe(E,u(k))° (Vk eN)
But:
c oo 1 c
Ea @)= 1 ({515 =115} )
m=n(k)
pad 1
RGO
m=n(k)
So: 1
e B = |fi(z) - f(x)| < z (Vk, for m large enough)
Which implies uniform convergence. O

3.5 Product measures

Reminder of the product o-algebra: take (X, M,u), (Y,N,v). We defined the product o-algebra in terms
of:

{I__II(EQ) :E, € Ma}

[e%

We denoted this as ® M. When you have a finite (or countable) product, that is the same as the one
generated by:
{T1Ea: EaeMa}

Definition 25. A rectangle is any set of the form Ax B for Ae M,BeN.
Observations:
e (AxB)n(ExF)is arectangle as (Ax B)n(ExF)=(AnE)x(BnF).
e (AxB)°=(X xB°)u(A°x B)
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Claim. The collection of finite disjoint unions of rectangles is an algebra.
Consider the rectangle A x B. Assume A x B can be written as J;2; 4; x B; with A; x B, rectangles. So:

XA xB®) = xaxs (@ 9) = 3 X (2:9) = > xa, () X5, ()

i=1 i=1
Then:
[ xa@xs@dn= [ xas@yde= [ Yxa@xe@de = % [ xa@xs@)de= Y uA)xs @)
i=1 i=1 i=1

By MCT

Now, we integrate with respect to y:
p(Aw(B) = [ wAxs@) v = [[ xaxs(ey)dudy = Y p(A)v(B:)
i=1
MCT

If we could define a measure 7 on (X x Y, M ® N'), we would expect:

W(AXB):[[ Xaxp dm
XxY
We find 7(A x B) should be u(A)v(B) or Y72, 1(Ai)v(B;). Thus:

7(Ax B) = ju(A)(B) - _‘_”ilu(Ai)u(Bi) - iwmi x B;)

Construction: define w(A x B) := u(A)v(B) as it has the property 7 (521 (Ai x B;)) = Yoy m(A; x B;). Now
we want to define an outer measure. Given any set W e M ® N, define:

(W) = inf{Zﬂ(Fi xG;):Wecl|J(F; xG,), F, e M, G, EN}
i=1 i=1
Definition 26. A set A is measurable if:
7 (E)=n"(EnA)+7"(EnA°) (VE)
Applying Caratheodory’s theorem we get that the set of measurable sets is a o-algebra (in fact it is the same
as M@N).
Main point: 7 is an extension of w(A x B) = u(A)v(B) when A x B is a rectangle.

Note:
e If 4 and v are o-finite then oo -0 = 0.

e Else we cannot say anything.

Example 13. Consider R x {1}.
m(Rx{1}) = u(R)r({1}) = 00 -0

But: -
Rx {1} = szl([—n,n] x{1})
So: N
(R x {1}) = w(uq—n,n] x {1}));ggn;w([—n,n] x{1}) = lim 0=0
n=l continuity
Let Ec X xY.

E,={yeY:(z,y) e E}
EY={zeX:(x,y) e £}
f:XxY >R (or C).
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o f.(y) fixes z, function on y.
o fY(x) fizes y, function on x.
Proposition 28.
a) Let Ec X xY, Ee M®N. Then E, is measurable w.r.t. v and EY is measurable w.r.t. ji.

b) Let f: X xY - R (or C) be a map that is M ®N measurable. Then f,(y) is measurable w.r.t. N and
fy(x) is measurable w.r.t. M.

Proof.

a) Remember, M ® N is o-algebra generated by A x B s.t. A€ M and B € . So it is smallest o-algebra
containing all A x B.

{E:EcXxY and E, is measurable w.r.t. v} > M N

Want to show two things for this set:

i) It contains all rectangles A x B:
E = A x B rectangle. Then:

B ifzeA
"Tlo ifztA
ii) It’s a o-algebra:
We need to show that it is closed under countable unions and closure under complements. Let
{Ei}ZicR

(QEz) = Q(Eim) eN

(B9 =(Ex)eN
b) Need f, measurable w.r.t. N, need:

(f2) (o) eN (Vo Borel)
We know:
fHo)eMaN (Vo Borel)
Claim. (f7'(0)). = (f2)7' (o)
O

Theorem 16. Let (X, M, pu),(Y,N,v) be o-finite measurable spaces. For E € M ® N we define:

zwv(E;)
y = p(EY)

The the two functions are measurable (w.r.t. appropriate measure), and:
pxv(B) = [ (B du= [ w(EY)dv
So:

pxv(E) = [[XW Xe(z,y)duxv (was true before)

:/;((fYXE(x,y)dz/) d,u:fy([XXE(x,y)du) dv (the theorem)
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Theorem 17 (Fubini-Tonelli). Let (X, M, u), (Y,N,v) be o-finite measure spaces.

a) (Tonelli) Let f be a non-negative measurable function in X xY . Define:

9@) = [ fudv
h(y) = / fYdu

Then g and h are measurable functions (w.r.t. appropriate c-algebra). Moreover:

ffduxy:fgdu:fhdu

b) (Fubini) Let f e L' (uxv) (ie. [|flduxv<oo). Then:
fee L' (v) (for almost every z € X)

fye L' (n) (for almost every y € Y')

Then if:

9@):= [ foav
h(y) = / fYdu

We have g € L*(u) and h e L*(v). Moreover:

ffduxy:fgdu:fhdu

Note that part a) (Tonelli) does not require [ fduxv < oo. In practical terms, given f: X xY - R. We look
at |f|: X xY — [0,00), then |f| satisfied all assumptions of Tonelli’s theorem. This will tell us if f € L', if
it is then we can apply Fubini (if not then we know nothing...).

Proof.
a) Claims:

i) The preceding theorem is a special case of Fubini-Tonelli, when f(z,y) = xg(z,y)
ii) By linearity Fubini-Tonelli is true for linear combinations of indicator functions.

iii) We can finish proof using fact that we can approximate measurable functions with an increasing
sequence of linear combinations of characteristic functions.

iii) Given f >0, we construct a sequence of simple functions {¢, 521, L.e. each a linear combination
of characteristic functions:

0<pr<pa<...<f

[ owdnsv= [ ([ @aedv)du= [ ([ (@) an) v

g(@) = [ (9n)o(y) v

gn is monotone increasing as ¢y < dp41:

And:

Now:

Jim ga(2) = lm [ (Gn)adv= [ lim 6 (e,9)dv = g(2)
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So:

fgdu=f lim g, dp

lim In dlt

n—o0

tin ([ ([ @) av) dn)
-t (] ([ st
f(giggof%(fﬂ,y)du) dv
:f(ff(x,y)du) dv

b) We are assuming [ |f|dp x v < oo, which implies [ f*dux v <oo and [ f~dux v < oo, with:

/fduxy:/f*dpxy—/ffdluxu

Apply part a) to each of the two integrals and then recombine.

Example 14.
Y
0 -1 1
-1 1
-1 1
-1 1
0
1

S ([ stz ay=1
f(/f(x’y)dy)dxzo

[ 11y dedy = oo

The reason they differ is that:

Example 15. Let:
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u(A) = # of points in A
X=[0,1]=Y ] RSP E
M =P(X)

e 4 = counting measure

e N = Lebesgue

v = Lebesgue measure

D={(z,z):z€[0,1]}

Consider:
I otesrins
We have:
f(fxD(:ay)du) du:f ldv=1
[0,1]
f(fXD(x,y)dV) dp = f 0du =0
[0,1]
Claim.

f xp(z,y)duxv=pxv(D) =00

4 Signed Measures

Let (X, M) be a measurable space. Then we say v is a signed measure if it satisfies v : M — [—o0, c0] with:
1. v(@)=0
2. v takes at most one of +oo.

3. {E;}721, with Ej € M pairwise disjoint then:

with the series converging absolutely for Yo ; v(E,) < co.
Example 16.

1. Take two measures on the same measurable space (X, M). Say p1, po with py(X), p2(X) < 0o. Define:
v(A) = p1(A) - p2(A)

2. Take p a (positive) measure. f: X — [—o0,00] measurable with [ |f|du < oo. Define:
F):= / d
v(B):= | fdp

We know that if p is a positive measure and f > 0 then the map A — fA fdp is a measure. Write:
v(E)= [ fau= [ frdu- [ 1 du
E E E
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Proposition 29. Let v be a signed measure on (X M).
i) If {E;} c M, Ej c Ej,1, then:
v([] Ej) - lim w(E;)
=1 g
ii) If {fj} c M, Fj 2 Fj.1 and [v(Fy)| < oo, then:

V(ﬂ Fj) = lim v(F))
=1 )i

Definition 27. Let (X, M), and let v be a signed measure.
1. We say E € M is a positive set iff v(F) >0 VF e M with F c E.
2. We say E € M is a negative set iff v(F) <0 VF e M with F c E.
3. We say E € M is null if E is positive and negative.

Example 17. v(E) = [, fdu for some f € L', p positive measure. Take f(z) =z, E c [-1,1], u Lebesgue.

E)= [ wd
v(E) L
1
v([-1,1]) = f xdr =0
-1
But:
1
[0,1] c [-1,1] and v([0,1]) = B
1
[-1,0] < [-1,1] and w([-1,0]) = -5
So E is neither positive or negative.
Lemma 3.
1. Any subset (that is measurable) of a positive set is positive.

2. Any subset (that is measurable) of a negative set is negative.

Theorem 18 (Hahn decomposition theorem). Let v be a signed measure on (X, M)-measurable space. Then
IP € M, a positive set and N € M, a negative set such that X = Pu N. If P',N' are another such pair,
then P A P" and N & N’ are null.

Notation: P A P’ is the symmetric difference.
PAP =(PuP)N(PnP)=(P~P)u(P'\P)
Proof. w.l.o.g. v does not attain +oco. Define:

M = sup {v(F) : E positive}
EeM

not empty as it contains @

Which implies 3{P;}72; c M such that P; positive and v(P;) » M.
Claim. P:=U372,; P; is positive and N := X \ P is negative.
Let FE c P, then:

E:EmP:En(UPj):U(EnPj) (and v(En P;) 20 Vj)
j=1 j=1
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So P is positive.

Observe that N does not contain any positive sets of positive measure. Otherwise, take E ¢ N with v(E) > 0.
Then v(PuFE)=v(P)+v(E)> M.

To show N is negative, go by contradiction. Assume N is not negative, i.e 34 ¢ N such that v(A) > 0.
Then, as A cannot be positive, 3C' ¢ A such that v(C) < 0. So take B = A\ C, then as:

v(A)=v(C)+v(A~C)

We have v(B) > v(A). We now construct a sequence {A4;}72; ¢ N and sequence {n;}72; c N. Let ny be the

smallest natural number such that 3B ¢ N with v(B) > i Choose A; to be one such set B. Let n; be the

smallest natural number such that 3B ¢ A;_; with v(B) > v(4;-1) + ni Choose A; to be one such set B.
J

Define A =2, A, then v(A) =limje v(4;) 2 Y52, -- = n; > 00 as j > oo (as v does not attain +00).
J

So v(A) >0 but 3B such that v(B) > v(A) + i for some n.. Notice, as nj; - oo, at some point n; > nx.
Once n; > n, we have a contradiction as n; is, by definition, the smallest natural number such that 3B with:

V(B) > v(A;-1) +%

So N is negative.

Finally, need to show uniqueness of decomposition (i.e. if P’, N’ is another such pair then P A P’ and N A N’
are null; we will do this by showing they are both positive and negative).

Need P\ P" and P’ \ P to be both positive and negative.

P\ P c P = positive
P'\ Pc P — positive
P\ P cN' = negative

P'\Pc N = negative

O
Notation: any decomposition X = Pu N with P positive and N negative is called a Hahn decomposition.

Definition 28. Let p and v be two signed measures on a non-empty measurable space (X, M). We say u
is mutually singular w.r.t. v if 3F, E € M such that:

X=FuE,EnF=g
with E null for u and F null for v.

Theorem 19 (Jordan decomposition). Given a signed measure v on (X, M), there exists two unique positive
measures ut, u” that are mutually singular and satisfy:

v=pu'-p
Proof.

i(B) = v(EnP)
i (B) = -v(EnN)

where P, N are Hahn decompositions of X, which implies u* and u~ are positive.

v(E)=v(En(PuN))=v(EnP)+v(EnN)=p"(E)-p (E)
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u and p~ are mutually singular as X = PuN. Let E c N. Then:

u(E)=v(EnP)=0

@
For uniqueness let:
-t
V=g p
v=v-v~

with v* # u* and v~ # u~. The measures v* and v~ must then generate another Hahn decomposition as v*
and v~ are mutually singular. Therefore 3F, F such that X = FUF, EnF = @ with E null for v~, F null

for v*. Now:
v (A)=v" (An(BuF))=v* (AnE)+v* (AnF)
p(A) = (AnP)=v(AnP)=v(AnE) = v (AnE) = v*(A) (VA)
u(AmE):V*'(;:E)—V_(AﬁE)
Also, v(AnP)=v(ANnE) as:

vV(AnP)=v(AnPn(EuUF))

=v(AnPnE)+v(AaPF) (as An Pn F c P positive)
V(ANE)=v(AnEn(PuN))

=v(AnPnE)+v(AaFErN) (as An Pn F c F negative)

O
Observation: (X, M,v) with v signed.
e In the Hahn decomposition, P, N are not necessarily unique.
e Jordan decomposition, v*, v~ are unique.
Definition 29. |v|:=v* + v~ is the total variation.
ply whenever p and v mutually singular.
Exercise (highly examinable):
vip < [y|lpy <= v iy and v 1pu
Recall:
v(E):= / fdu (for f e L', u positive)
E
Proposition 30. Given a signed measure v, we have:
E) - f d
v(B)= | fdu
Where f = xp - xn for P,N from Hahn decomposition, and u = |v|.
Proof.
f fdﬂ:f xXp = XN dp
E E
- [ Ger - x)xdy)
= f XpPnE — XNnE AV +17)
=v"(PnE)-v"(NnE)+v (PnE)-v (NnE)
=v"(PnE)-v (NnE)
=v"(E)-v (E)
=v(E)
O
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How to integrate w.r.t. signed measures?
=vt v~ (unique by Jordan)
f fdv:= f fdvt - f fdv™ (whenever this is not co — o)

Definition 30. Let f: I - R, f is absolutely continuous if Ve > 0 39 such that whenever a finite sequence
of pairwise disjoint subintervals (ag,by) c I satisfies 3, |bx, — ax| < 3§, we have ¥ |f(bx) — f(ar)| <e.

Definition 31. u-positive measure, v-signed measure. v is absolutely continuous w.r.t. p if:
W(E)=0 = v(E)=0
We write v << p

Exercises:

1.
v<p<e=vt<<pand v <<
vigand v<<p = v(A)=0 (VA)

Theorem 20. v-signed measure, p-positive measure. Then v << p iff Ye > 0 3§ such that p(E) < § —
[V(E)|<e.

As an application, take f € L', 1 any positive measure. Define:
v(F):= / d
(B):= | fdu

Then Ve >0 36 > 0 such that u(E) <§ = |[v(F)| <e. This is because v << u as:
w(E)=0 = w(B) = [ fdu=0

(Notation: whenever v(E) = [ f du, we write dv = f dp)

F(z) = fazf(y)dy

“Claim” F'(x) = f for “nice” f:

PehF@) Ly,

Let W(E) = [y, f dz, then [ [(y)dy = v([a,z])

v([z,x+h])
p([z,z + h])

Theorem 21 (Lebesgue-Radon-Nikodym). (X, M) non-empty measurable space. Let v be a o-finite signed
measure and [ be a o-finite positive measure. Then 3!\, p o-finite signed measures such that:

i S = (e h) -

AL, <<, v=A+@

Moreover, there is an integrable function f: X — R such that de = fdp (i.e. p(E) = [5 fdp). Any two such
functions are equal a.e. w.r.t. .
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i.e. for v, u given, unique way to write:
V(E) = \(E) + ¢(E)
=AF)+ f d
(E)+ | fdu
with ALy and ¢ << p.

In general, given v, i it is not possible to write:

V()= [ fdu

for some f. When we can’t do this we can’t compute is larger j—”.
m

Proposition 31. v o-finite signed u, A o-finite positive. Assume v << X\ and pu << X. Then:
f hdv = f &
dp

v _dvdp
d\  dpd)

Also:

5 Crash Course on L? Spaces
Let (X, M, ).
Lp:{f:X»C:f|f|de<oo} (1<p<oo)

If p=1then | f] := [ |f|du is a norm on L£*. If p > 1 then natural idea for norm is:

11y ([ 117 )

Again, doesn’t work yet.

Define ~ (equivalence class) such that f ~ g iff f =g a.e. Define
LP =7/~ (1<p< o)
To show | f]|, is a norm on LP need:
i) [£lp>0and [f], = f=0 (in L?).
i) [Aflp = NI f]lp (trivial).
i) |f+gl <Iflp+lgly

Proposition 32.
fel?, gelP = f+gel?

Proof.
[f () + g(2)I” < (2max {|f ()], |g(=)[})" < 2°(|f (@) " +[g(x)[")

Therefore:

[ipegraps2 [1prdur2e [gPda<oo
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Lemma 4. Leta>0,b>0, 0<A<1. Then:

a*b' ™ < da+ (1-N\)b
With equality iff a = b.
Proof. This is trivial if b =0, so assume b # 0, then:

b sA(9)+1—A

b

So want, for t > 0, t» < At +1—-\. Let f(t) <1 - \. Calculating max using differentiation gives t = 1 as
max O

Theorem 22 (Hoélder’s inequality).

[ 15 gl < 171 lgly (provided § + = 1)
Proof. Trivial if | f], =0 or oo, or |g], =0 or oo, so assume they are not. This it is equivalent to show:
/I gl

dp<1
1 £l lgllq
So enough to show:

[ 15-gldu<n (whenever | £[, = lgl, = 1)

By using the above lemma with a = |f(x)|P, b=|g(z)|?, A= %, we get:

1 1
[f1-lgl < =[fIP + =gl
p q

1 1 1 1
[15-gldus [ igrau+ [ Zigtan= =+~
p q p q

Theorem 23 (Minkowski’s inequality).

Therefore:

1f+glp <1 flo+ gl

Proof. (Using Holder’s inequality)
This is trivial for p =1 (just triangle inequality for real numbers), so let p > 1:

[ s wgldu= [15+glf g dus [Afi+loDlf + gt dus [ U+ gl dpos [ lgllf + gl di

Now 1+1l=1 — 121 g,
P q P

Q=

Jireaans 1 (f oy an) ol (07 ortyran)’

Holder’s

=0fu+|mm(/1f+mpm03

This gives us:
1-1

([1r+aran) " <isl+ 1l
ie.

([ 15 +oPau)” <171, 1ol
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