MA359 Measure Theory

Thomas Reddington
Usman Qureshi

April 18, 2014

Contents

1 Real Line 3
1.1 Cantor set 5
2 General Measures 12
2.1 Product spaces 17
2.2 Outer measures 18
3 Measurable Functions and Integration 22
3.1 Devil's staircase 24
3.2 Integration for $f: X \rightarrow[0, \infty]$ 25
3.3 Integration for general $f: X \rightarrow \mathbb{R} \cup\{ \pm \infty\}$ 35
3.4 Different modes of convergence 41
3.5 Product measures 44
4 Signed Measures 49
5 Crash Course on L^{p} Spaces 54

Introduction

These lecture notes are a projection of the MA359 Measure Theory course 2013/2014, delivered by Dr José Rodrigo at the University of Warwick. These notes should be virtually complete, but the tedious treasure hunt of errors will always be an open game. And, obviously, completeness and accuracy cannot be guaranteed. If you spot an error, or want the source code to fiddle with in your way, send an e-mail to me@tomred.org. We hope these are helpful, and good luck!

Tom and Usman \odot

Useful links

1. The up-to-date version of these notes should be found here: https://www.dropbox.com/sh/zqreyxd1dyazpes/OlbaDh95ze/Year\ 3/MA359\ Measure\ Theory
2. Failing that:
http://www.tomred.org/lecture-notes.html
3. Students taking this course should also take a look at Lewis Woodgate's Skydrive notes: https://skydrive.live.com/view.aspx?resid=AC6AC9E3BEE89219!308\&app=0neNote\&authkey=!AB4KXPRDOKG9QKc
4. ...and Alex Wendland's Dropbox notes: https://www.dropbox.com/sh/5m63moxv6csy8tn/LY3576RtRQ/Year\ 3/Measure\ theory

We want to measure every subset of \mathbb{R}. i.e. we want a map:

$$
m: \underbrace{\mathcal{P}(\mathbb{R})}_{\text {parts of } \mathbb{R}} \rightarrow[0, \infty]
$$

where $m($ interval $(a, b))=b-a$ (same with intervals such as $[a, b)$). e.g. $m((1,2))=2-1$. Wish list form:
1.

$$
m((a, b))=b-a
$$

2.

$$
m(A)=m(A+h)
$$

$(\forall A \subseteq \mathbb{R}, \forall h \in \mathbb{R})$
3.

$$
A=\biguplus_{n=1}^{\infty} A_{n} \Longrightarrow m(A)=\sum_{n=1}^{\infty} m\left(A_{n}\right)
$$

Claim. There isn't such an m.
Goal: "Construct" a subset \mathbb{R}, such that it is impossible to assign a measure and satisfy the proposition in the wish list.

1 Real Line

Agree on the measure of intervals:

$$
\begin{aligned}
& I=(a, b) \\
&=[a, b) \\
&=(a, b] \\
&=[a, b] \\
& m(I)=\text { "usual length" of } I=b-a
\end{aligned}
$$

Definition 1. Let $A \subseteq \mathbb{R}$:

$$
m^{*}(A)=\inf \left\{\sum_{k=1}^{\infty}\left|I_{k}\right|: I_{k} \text { are open intervals and } A \subset \bigcup_{k=1}^{\infty} I_{k}\right\}
$$

where $\left|I_{k}\right|$ is the length of the interval $I_{k} . m^{*}$ is the outer measure.
Construction:

1. Cover A by lots of open intervals.
2. Summing the lengths creates a set in $[0, \infty]$.
3. Compute the infimum (the existence of which is trivial, as the set in question is bounded below).

Proposition 1 (Properties of m^{*}).

1. $0 \leq m^{*}(A) \forall A \subseteq \mathbb{R}$.
2. $m^{*}(\mathbb{Q})=0$ (surprising because \mathbb{Q} is dense).
3. m^{*} is defined for $\mathcal{P}(\mathbb{R})$ (it is defined for every subset of \mathbb{R}).
4. $m^{*}(A) \leq m^{*}(B)$ whenever $A \subset B$.
5. $m^{*}(I)=|I|$ for any interval I.
6. $m^{*}(A+h)=m^{*}(A) \forall h \in \mathbb{R}, A \subset \mathbb{R}$.

Proof.

1. For any interval $I,|I| \geq 0$, and as $m^{*}(A)$ is a greatest lower bound, $m^{*}(A) \geq 0 \forall A$.
2. Take $\left\{x_{n}\right\}$ to be an enumeration of \mathbb{Q}. Define:

$$
I_{n}=\left(x_{n}-\frac{\varepsilon}{2^{n+1}}, x_{n}+\frac{\varepsilon}{2^{n+1}}\right)
$$

for any fixed $\varepsilon>0$. Notice $\left|I_{n}\right|=\frac{\varepsilon}{2^{n}}$ and $\mathbb{Q} \subset\left(\cup_{n=1}^{\infty} I_{n}\right)$. Since:

$$
m^{*}(\mathbb{Q})=\inf \left\{\sum_{n=1}^{\infty}\left|J_{n}\right|: J_{n} \text { open and } \mathbb{Q} \subset \bigcup_{n=1}^{\infty} J_{n}\right\}
$$

we have:

$$
m^{*}(\mathbb{Q}) \leq \sum_{n=1}^{\infty}\left|I_{n}\right|=\sum_{n=1}^{\infty} \frac{\varepsilon}{2^{n}}=\varepsilon
$$

So $0 \leq m^{*}(\mathbb{Q}) \leq \varepsilon$ for any $\varepsilon \geq 0$. By sending $\varepsilon \rightarrow 0 \Longrightarrow m^{*}(\mathbb{Q})=0$
3. $\sum_{k=1}^{\infty}\left|I_{k}\right|$ is defined as it is a limit of an increasing sequence, so our infimum will always be defined.
4. Every open cover of B by intervals also covers $A \Longrightarrow$ the collection of elements over which we compute $\Longrightarrow m^{*}(A) \leq m^{*}(B)$.
5. We will show two inequalities:

$$
\begin{aligned}
& m^{*}(I) \leq|I| \\
& m^{*}(I) \geq|I|
\end{aligned}
$$

Now for $|I| \leq m^{*}(I)$:
Take a cover of $I,\left\{I_{n}\right\}_{n=1}^{\infty}$. Since $I=[a, b]$ there exists a finite subcover of I (as it's compact and closed). Upon relabelling the sets, say:

$$
I_{1}, I_{2}, \ldots, I_{N}
$$

We have our finite subcover of I :

As these are all open, there is overlap inbetween the open intervals. Choose a point in each of the overlapping intervals. i.e. choose a_{j} from each $I_{j} \cap I_{j+1}$. So $\left(a_{1}, a_{2}\right) \subset I_{1},\left(a_{2}, a_{3}\right) \subset I_{2}$ and $\left(a_{j}, a_{j+1}\right) \subset I_{j}$. Now:

$$
|b-a| \leq\left|a_{N+1}-a_{1}\right|=a_{N+1}-a_{N}+a_{N}-a_{N-1}+a_{N-1}-\ldots+a_{2}-a_{1}=\sum_{j=1}^{N} a_{j+1}-a_{j}
$$

As $a_{j+1}-a_{j} \leq\left|I_{j}\right|$. Then:

$$
|I|=|b-a| \leq \sum_{j=1}^{N} a_{j+1}-a_{j} \leq \sum_{j=1}^{N}\left|I_{j}\right| \leq \sum_{j=1}^{\infty}\left|I_{j}\right|
$$

(for all open covers)

Which implies:

$$
|I| \leq \inf \left\{\sum_{j=1}^{\infty}\left|I_{j}\right|: I_{j} \text { open... }\right\}=m^{*}(I)
$$

Now for $|I| \geq m^{*}(I)$:
Say $I=[a, b]$. Define $I_{1}=\left(a-\frac{\varepsilon}{2}, b+\frac{\varepsilon}{2}\right), I_{j}=\varnothing \forall j \geq 2$.
$\Longrightarrow[a, b] \subset \cup_{j=1}^{\infty} I_{j}$
$\Longrightarrow m^{*}(I) \leq\left|I_{1}\right| \leq b-a+\varepsilon=|I|+\varepsilon \forall \varepsilon>0$
\Longrightarrow as $\varepsilon \rightarrow 0, m^{*}(I) \leq|I|$.
6. Reason is $|I+h|=|I|$.

The only property that we do not have is:

$$
m^{*}(A \cup B)=m^{*}(A)+m^{*}(B)
$$

(it's false)
Another observation:

$$
A \subset \bigcup_{n=1}^{\infty} A_{n} \Longrightarrow m^{*}(A) \leq m^{*}\left(\bigcup_{n=1}^{\infty} A_{n}\right) \leq \sum_{n=1}^{\infty} m^{*}\left(A_{n}\right)
$$

Proof. $\forall \varepsilon>0$ there exists a countable collection of open intervals $\left\{I_{n, k}\right\}_{k=1}^{\infty}$ such that:

$$
\begin{equation*}
\sum_{k=1}^{\infty}\left|I_{n, k}\right| \leq m^{*}\left(A_{n}\right)+\frac{\varepsilon}{2^{n}} \tag{*}
\end{equation*}
$$

If $\sum_{n=1}^{\infty} m^{*}\left(A_{n}\right)=\infty$, there is nothing to prove. Else, sum (*) w.r.t. n :

$$
\sum_{n, k=1}^{\infty}\left|I_{n, k}\right| \leq \sum_{n=1}^{\infty} m^{*}\left(A_{n}\right)+\varepsilon
$$

Want to show:

$$
\begin{equation*}
m^{*}\left(\bigcup_{n=1}^{\infty} A_{n}\right) \leq \sum_{n, k}^{\infty}\left|I_{n, k}\right| \leq\left(\sum_{n=1}^{\infty} m^{*}\left(A_{n}\right)\right)+\varepsilon \tag{**}
\end{equation*}
$$

This is true $\forall \varepsilon>0$ so send $\varepsilon \rightarrow 0$.

1.1 Cantor set

$C:=\bigcap_{n=1}^{\infty} C_{n}$ but there exists a bijection between C and \mathbb{R}.

$$
m^{*}(C) \leq m^{*}\left(C_{n}\right) \leq 2^{n}\left(\frac{1}{3}\right)^{n} \rightarrow 0 \quad(\text { as } n \rightarrow \infty)
$$

So $m^{*}(C)=0$. Thus measure and cardinality do not mix well...
Definition 2. We say that $A \subset \mathbb{R}$ is measurable iff:

$$
m^{*}(E)=m^{*}(E \cap A)+m^{*}\left(E \cap A^{c}\right)
$$

Remark 1. It is enough to show $m^{*}(E) \geq m^{*}(E \cap A)+m^{*}\left(E \cap A^{c}\right) \forall E \subset \mathbb{R}$. This is because:

$$
E \subset(E \cap A) \cup\left(E \cap A^{c}\right) \Longrightarrow m^{*}(E) \leq m^{*}\left((E \cap A) \cup\left(E \cap A^{c}\right)\right) \leq m^{*}(E \cap A)+m^{*}\left(E \cap A^{c}\right)
$$

by the above proposition.
Example 1 (Examples of measurable sets).

- \mathbb{Q} is measurable, as $m^{*}(\mathbb{Q})=0$.
- Any set $A \subset \mathbb{R}$ with $m^{*}(A)=0$.

Proof.

$$
\begin{aligned}
(E \cap A) \subset A & \Longrightarrow m^{*}(E \cap A) \leq m^{*}(A)=0 \\
\left(E \cap A^{c}\right) \subset E & \Longrightarrow m^{*}\left(E \cap A^{c}\right) \leq m^{*}(E) \\
& \Longrightarrow m^{*}(E) \geq m^{*}(E \cap A)+m^{*}\left(E \cap A^{c}\right)
\end{aligned}
$$

- $\mathbb{R} \backslash \mathbb{Q}$ is by the lemma below.

Lemma 1. A measurable $\Longrightarrow A^{c}$ measurable.
Proof.

$$
m^{*}(E)=m^{*}\left(E \cap A^{c}\right)+m^{*}\left(E \cap\left(A^{c}\right)^{c}\right)
$$

Proposition 2. Intervals are measurable.
Proof. Want to show:

$$
m^{*}(E)=m^{*}(E \cap I)+m^{*}\left(E \cap I^{c}\right)
$$

First, take an open cover of E by intervals, say $\left\{E_{k}\right\}_{k=1}^{\infty} . I \cap E_{k}$ is an interval $\forall k . I^{c} \cap E_{k}$ is at most two intervals $\forall k$.
(From $\left\{E_{k}\right\}$ it isn't possible to construct (open) covers of $I \cap E$ and $I \cap E^{c}$)
$\left(I \cap E_{k}\right) \subset A_{k}$ for A_{k} an open interval.
$\left(I^{c} \cap E_{k}\right) \subset\left(B_{k} \cup C_{k}\right)$ for B_{k}, C_{k} open intervals.
Choose such that:

$$
\left|A_{k}\right|+\left|B_{k}\right|+\left|C_{k}\right|<\left|I_{k}\right|+\frac{\varepsilon}{2^{k}}
$$

Now, $\left\{I_{k}\right\}$ cover E :

$$
\sum_{n=1}^{\infty}\left(\left|I_{k}\right|+\frac{\varepsilon}{2^{k}}\right) \geq \sum_{n=1}^{\infty}\left|A_{k}\right|+\left|B_{k}\right|+\left|C_{k}\right|
$$

Also:

$$
\begin{gathered}
\bigcup_{k=1}^{\infty}\left(A \cap I_{k}\right) \subset \bigcup_{k=1}^{\infty} A_{k} \& \bigcup_{k=1}^{\infty}\left(A \cap I_{k}\right)=A \cap\left(\bigcup_{k=1}^{\infty} I_{k}\right) \\
\& A \cap E \subset\left(\bigcup_{k=1}^{\infty} I_{k}\right)
\end{gathered}
$$

(Similarly for $\left|B_{k}\right|+\left|C_{k}\right|$)
So:

$$
\begin{aligned}
\sum_{k=1}^{\infty}\left|A_{k}\right|+\left|B_{k}\right|+\left|C_{k}\right| & \geq m^{*}(E \cap A)+m^{*}\left(E \cap A^{c}\right) \\
\Longrightarrow m^{*}(E \cap A)+m^{*}\left(E \cap A^{c}\right) & \geq\left(\sum_{k=1}^{\infty}\left|I_{k}\right|\right)+\varepsilon
\end{aligned}
$$

By taking the infimum over all possible covers:

$$
m^{*}(E \cap A)+m^{*}\left(E \cap A^{c}\right) \leq m^{*}(E)+\varepsilon
$$

Finally, let $\varepsilon \rightarrow 0$.
Proposition 3. A, B measurable $\Longrightarrow A \cup B$ and $A \cap B$ measurable.
Proof. We know $m^{*}(F)=m^{*}(F \cap A)+m^{*}\left(F \cap A^{c}\right) \forall F$. Take $F=E \cap(A \cup B)$ for some E. We want:

$$
\begin{aligned}
m^{*}(E) & =m^{*}(E \cap(A \cup B))+m^{*}\left(E \cap(A \cup B)^{c}\right) \\
m^{*}(E \cap(A \cup B)) & =m^{*}(E \cap(A \cup B) \cap A)+m^{*}\left(E \cap(A \cup B) \cap A^{c}\right) \\
& =m^{*}(E \cap A)+m^{*}\left(E \cap B \cap A^{c}\right)
\end{aligned}
$$

Now:

$$
\begin{aligned}
m^{*}(E) & =m^{*}(E \cap A)+m^{*}\left(E \cap A^{c}\right) & & \text { (as } A \text { is measurable) } \\
& =m^{*}(E \cap A)+m^{*}\left(E \cap A^{c} \cap B\right)+m^{*}\left(E \cap A^{c} \cap B^{c}\right) & & \text { (as } B \text { is measurable) } \\
& =m^{*}(E \cap(A \cup B))+m^{*}\left(E \cap(A \cup B)^{c}\right) & &
\end{aligned}
$$

For intersection:

$$
\begin{aligned}
A^{c} \text { and } B^{c} \text { measurable } & \Longrightarrow A^{c} \cup B^{c} \text { measurable } \\
& \Longrightarrow\left(A^{c} \cup B^{c}\right)^{c} \text { measurable } \\
& \Longrightarrow A \cap B \text { measurable } .
\end{aligned}
$$

Proposition 4. Let A_{1}, \ldots, A_{N} measurable and pairwise disjoint. Then:

$$
m^{*}\left(E \cap \bigcup_{i=1}^{N} A_{i}\right)=\sum_{i=1}^{N} m^{*}\left(E \cap A_{i}\right)
$$

Note, if $E=\mathbb{R}$, then:

$$
m^{*}\left(\bigcup_{i=1}^{N} A_{i}\right)=\sum_{i=1}^{N} m^{*}\left(A_{i}\right)
$$

Proof. By induction. $N=1$ is trivial. Assume true for $1, \ldots, N$. Then:

$$
\begin{aligned}
m^{*}\left(E \cap \bigcup_{n=1}^{N+1} A_{i}\right) & =m^{*}\left(\left(E \cap \bigcup_{n=1}^{N+1} A_{i}\right) \cap A_{N+1}\right)+m^{*}\left(\left(E \cap \bigcup_{n=1}^{N+1} A_{i}\right) \cap A_{N+1}^{c}\right) \\
& =m^{*}\left(E \cap A_{N+1}\right)+m^{*}\left(E \cap \bigcup_{n=1}^{N} A_{i}\right) \\
& =m^{*}\left(E \cap A_{N+1}\right)+\sum_{n=1}^{N} m^{*}\left(E \cap A_{i}\right) \\
& =\sum_{i=1}^{N+1}\left(E \cap A_{i}\right)
\end{aligned}
$$

Proposition 5. Let $\left\{A_{i}\right\}_{i=1}^{\infty}$ be measurable. Then $\cup_{i=1}^{\infty} A_{i}$ is measurable. Moreover, if A_{i} are pairwise disjoint then:

$$
m^{*}\left(\biguplus_{i=1}^{\infty} A_{i}\right)=\sum_{i=1}^{\infty} m^{*}\left(A_{i}\right)
$$

Proof. Let $B:=\bigcup_{i=1}^{\infty} A_{i} \& B_{n}:=\bigcup_{i=1}^{n} A_{i}$ which is measurable by a previous proposition. Want to show:

$$
m^{*}(E)=m^{*}(E \cap B)+m^{*}\left(E \cap B^{c}\right)
$$

Assume for the moment that A_{i} are pairwise disjoint. We know that $m^{*}(E)=m^{*}\left(E \cap B_{n}\right)+m^{*}\left(E \cap B_{n}^{c}\right)$:

$$
\begin{aligned}
B_{n} \subset B & \Longrightarrow B^{c} \subset B_{n}^{c} \\
& \Longrightarrow\left(E \cap B_{n}^{c}\right) \supset\left(E \cap B^{c}\right) \\
& \Longrightarrow m^{*}\left(E \cap B_{n}^{c}\right) \geq m^{*}\left(E \cap B^{c}\right)
\end{aligned}
$$

Thus:

$$
\begin{aligned}
m^{*}(E) & \geq m^{*}\left(E \cap B_{n}\right)+m^{*}\left(E \cap B^{c}\right) \\
& \geq \underbrace{m^{*}\left(E \cap B_{n}\right)}+m^{*}\left(E \cap B^{c}\right) \\
& \geq \sum_{i=1}^{n} m^{*}\left(E \cap A_{i}\right)+m^{*}\left(E \cap B^{c}\right)
\end{aligned}
$$

Now, LHS \geq RHS and LHS is independent of n, so:

$$
\begin{aligned}
\mathrm{LHS} & \geq \lim _{n \rightarrow \infty} \mathrm{RHS} \\
m^{*}(E) & \geq \sum_{i=1}^{\infty} m^{*}\left(E \cap A_{i}\right)+m^{*}\left(E \cap B^{c}\right)
\end{aligned}
$$

Now, consider:

$$
\begin{aligned}
m^{*}(E \cap B) & =m^{*}\left(E \cap \bigcup_{i=1}^{\infty} A_{i}\right) \\
& =m^{*}\left(\bigcup_{i=1}^{\infty}\left(E \cap A_{i}\right)\right) \\
& \leq \sum_{i=1}^{\infty} m^{*}\left(E \cap A_{i}\right)
\end{aligned}
$$

So $m^{*}(E) \geq m^{*}(E \cap B)+m^{*}\left(E \cap B^{c}\right)$. But:

$$
\begin{align*}
m^{*}(E) & \leq m^{*}(E \cap B)+m^{*}\left(E \cap B^{c}\right) \\
\Longrightarrow m^{*}(E) & =\sum_{i=1}^{\infty} m^{*}\left(E \cap A_{i}\right)+m^{*}\left(E \cap\left(\bigcup_{i=1}^{\infty} A_{i}\right)^{c}\right)
\end{align*}
$$

Thus, take $E=\cup_{i=1}^{\infty} A_{i}$, then:

$$
m^{*}\left(\bigcup_{i=1}^{\infty} A_{i}\right)=\sum_{i=1}^{\infty} m^{*}\left(A_{i}\right)+m^{*}(\varnothing)
$$

Finally, need to show the extra hypothesis of pairwise disjoint. Define:

$$
\begin{align*}
W_{1} & :=A_{1} \\
W_{2} & :=A_{2} \backslash A_{1}=A_{2} \sqcap \tag{measurable}\\
W_{3} & :=A_{3} \backslash\left(A_{1} \cup A_{2}\right) \\
& \vdots \\
W_{n} & :=A_{n} \backslash\left(\bigcup_{i=1}^{n-1} A_{i}\right)
\end{align*}
$$

$$
W_{2}:=A_{2} \backslash A_{1}=A_{2} \cap A_{1}^{c} \quad \text { (measurable) }
$$

$$
W_{3}:=A_{3} \backslash\left(A_{1} \cup A_{2}\right) \quad \text { (measurable) }
$$

Thus:

$$
\bigcup_{i=1}^{\infty} A_{i}=\bigcup_{i=1}^{\infty} W_{i}
$$

W_{i} are measurable and pairwise disjoint.
Observation: $\left\{B_{i}\right\}_{i=1}^{\infty}$ measurable $\Longrightarrow \cap_{i=1}^{\infty} B_{i}$ measurable.
Proposition 6. List of properties of measurable sets:

- Complements, countable unions and intersections of measurable sets are measurable.
- Intervals are measurable.
- (Countable additivity) A_{i} measurable and pairwise disjoint $\Longrightarrow m^{*}\left(\cup_{i=1}^{\infty} A_{i}\right)=\sum_{i=1}^{\infty} m^{*}\left(A_{i}\right)$.
- (Countinuity) A_{i} measurable and $A_{1} \supset A_{2} \supset \ldots \supset A_{n} \supset A_{n+1} \supset \ldots$ and B_{i} measurable and $B_{1} \subset B_{2} \subset \ldots \subset$ $B_{n} \subset B_{n+1} \subset \ldots$ and $m^{*}\left(A_{1}\right)<\infty$. Then $\bigcap_{i=1}^{\infty} A_{i} \& \bigcup_{i=1}^{\infty} B_{i}$ are measurable. Moreover:

$$
m^{*}\left(\bigcap_{i=1}^{\infty} A_{i}\right)=\lim _{i \rightarrow \infty} m^{*}\left(A_{i}\right) \& m^{*}\left(\bigcup_{i=1}^{\infty} B_{i}\right)=\lim _{i \rightarrow \infty} m^{*}\left(B_{i}\right)
$$

- (Translation invariance) A measurable $\Longrightarrow A+h$ measurable.

$$
m^{*}(A)=m^{*}(A+h)
$$

- Open and closed sets are measurable.
- (Approximation property) A measurable, then $\forall \varepsilon>0 \exists B$ closed, $\exists C$ open, $B \subset A \subset C$ s.t. $m^{*}(C \backslash B)<\varepsilon$. Moreover, if $m^{*}(A)<\infty$ then B can be taken compact.

Proof of continuity. First, we don't need $m^{*}\left(A_{1}\right)<\infty$, we need $m^{*}\left(A_{n}\right)<\infty$ for some n, as for $m^{*}\left(A_{1}\right)=\infty$, $m^{*}\left(A_{2}\right)<\infty$. We have:

$$
\bigcap_{i=1}^{\infty} A_{i}=\bigcap_{i=2}^{\infty} A_{i}
$$

as $A_{1} \supset A_{2}$.
Let's do B_{i} s first. $B_{1} \subset B_{2} \subset B_{3} \subset \ldots$. Create a disjoint collection whose union is $\bigcup_{i=1}^{\infty} B_{i}$. Define:

$$
\begin{aligned}
C_{1} & =B_{1} \\
C_{2} & =B_{2} \backslash B_{1} \\
C_{3} & =B_{3} \backslash B_{2} \\
\vdots & \\
C_{n} & =B_{n} \backslash B_{n-1}
\end{aligned}
$$

Notice:

$$
\biguplus_{i=1}^{\infty} C_{i}=\bigcup_{i=1}^{\infty} B_{i},
$$

so:

$$
\lim _{n \rightarrow \infty} m^{*}\left(B_{n}\right)=\lim _{n \rightarrow \infty} m^{*}\left(\bigcup_{i=1}^{n} C_{i}\right)=\lim _{n \rightarrow \infty} \sum_{i=1}^{n} m^{*}\left(C_{i}\right)=\sum_{i=1}^{\infty} m^{*}\left(C_{i}\right)=m^{*}\left(\bigcup_{i=1}^{\infty} C_{i}\right)=m^{*}\left(\bigcup_{i=1}^{\infty} B_{i}\right)
$$

$A_{1} \supset A_{2} \supset \ldots$ measurable and $m^{*}\left(A_{1}\right)<\infty$. Construct increasing set, define $D_{n}:=A_{1} \cap A_{n}^{c}$ measurable. $D_{1} \subset D_{2} \subset \ldots$
So we know $m^{*}\left(\cup_{n=1}^{\infty} D_{n}\right)=\lim _{n \rightarrow \infty} m^{*}\left(D_{n}\right)$, and:

$$
\begin{equation*}
A_{1}=A_{n} \cup D_{n} \Longrightarrow m^{*}\left(A_{1}\right)=m^{*}\left(A_{n}\right)+m^{*}\left(D_{n}\right), \tag{*}
\end{equation*}
$$

and:

$$
A_{1}=\bigcap_{n=1}^{\infty} A_{n} \cup \bigcup_{n=1}^{\infty} D_{n} \Longrightarrow m^{*}\left(A_{1}\right)=m^{*}\left(\bigcap_{n=1}^{\infty} A_{n}\right)+m^{*}\left(\bigcup_{n=1}^{\infty} D_{n}\right)
$$

So:

$$
\begin{equation*}
m^{*}\left(A_{1}\right)=m^{*}\left(\bigcap_{n=1}^{\infty} A_{n}\right)+\lim _{n \rightarrow \infty} m^{*}\left(D_{n}\right) \tag{**}
\end{equation*}
$$

and, by (*):

$$
m^{*}\left(A_{1}\right)=\lim _{n \rightarrow \infty} m^{*}\left(A_{n}\right)+\lim _{n \rightarrow \infty} m^{*}\left(D_{n}\right)
$$

as $m^{*}\left(A_{1}\right)<\infty$ and $m^{*}(\cdot) \geq 0$. So, by $(* *)$:

$$
\Longrightarrow m^{*}\left(\bigcap_{n=1}^{\infty} A_{n}\right)=\lim _{n \rightarrow \infty}\left(A_{n}\right)
$$

Proof that open \& closed sets are measurable.
Claim. Every open set in \mathbb{R} can be written like:

$$
U=\bigcup_{n=1}^{\infty} I_{n} \quad \quad \text { (for open intervals } I_{n} \text {) }
$$

Thus open sets in \mathbb{R} are measurable. So closed are too as complements are measurable.
Proof of approximation property. A is measurable, want to show that $\forall \varepsilon>0 \exists B, C$ with $B \subset A \subset C$ s.t. $m^{*}(C \backslash B)<\varepsilon$. First, assume $A \subset J, J$ a closed \& bounded interval. Since $m^{*}(A)<\infty$, there exists a cover $\left\{I_{j}\right\}_{j=1}^{\infty}$ by open intervals:

$$
A \subseteq \bigcup_{j=1}^{\infty} I_{j}
$$

such that:

$$
\sum_{j=1}^{\infty}\left|I_{j}\right| \leq m^{*}(A)+\frac{\varepsilon}{2}
$$

and:

$$
m^{*}\left(\bigcup_{j=1}^{\infty} I_{j}\right) \leq \sum_{j=1}^{\infty}\left|I_{j}\right| \leq m^{*}(A)+\frac{\varepsilon}{2}
$$

Define:

$$
C:=\bigcup_{j=1}^{\infty} I_{j}
$$

C is open and $\underbrace{m^{*}(C)-m^{*}(A)} \leq \frac{\varepsilon}{2}$.

$$
=m^{*}(C \backslash A) \text { as } A \subseteq C
$$

To find B, consider $J \backslash A$ (which is measurable). We can find an open set O s.t. $(J \backslash A) \subset O$ and:

$$
m^{*}(O)-m^{*}(J \backslash A)<\frac{\varepsilon}{2}
$$

Define $B:=J \backslash O=J \cap O^{c}$ (closed from finite intersections of closed sets). As B is measurable:

$$
\begin{aligned}
m^{*}(C) & =\underbrace{m^{*}(B \cap C)}_{=B}+m^{*}\left(C \cap B^{c}\right) \\
& =m^{*}(B)+m^{*}(C \backslash B)
\end{aligned}
$$

So:

$$
\begin{aligned}
m^{*}(C \backslash B) & =m^{*}(C)-m^{*}(B) \\
& =\underbrace{m^{*}(C)-m^{*}(A)}_{\leq \frac{\varepsilon}{2}}+m^{*}(A)-m^{*}(B)
\end{aligned}
$$

So all that is left is to show $m^{*}(A)-m^{*}(B)<\frac{\varepsilon}{2}$:

$$
m^{*}(J) \leq m^{*}(O \cup B) \leq m^{*}(O)+m^{*}(B)<m^{*}(J \backslash A)+m^{*}(B)+\frac{\varepsilon}{2}
$$

But:

$$
\begin{array}{rlr}
m^{*}(J) & =m^{*}(A)+m^{*}(J \backslash A) \\
\Longrightarrow \quad m^{*}(A)+m^{*}(J \backslash A) & <m^{*}(J \backslash A)+m^{*}(B)+\frac{\varepsilon}{2} & \\
\Longrightarrow \quad m^{*}(A) & <m^{*}(B)+\frac{\varepsilon}{2} & \left(\text { as } m^{*}(J \backslash A)<\infty\right) \\
\Longrightarrow \quad m^{*}(A)-m^{*}(B) & <\frac{\varepsilon}{2}
\end{array}
$$

Finally, we remove our assumption. Define:

$$
\left\{A_{n}\right\}_{-\infty}^{\infty}:=A \cap[n, n+1]
$$

For each A_{n} fine $B_{n} \subset A_{n} \subset C_{n}$ with B_{n} closed, C_{n} open and $m^{*}\left(C_{n} \backslash B_{n}\right) \leq \frac{\varepsilon}{2^{|n|}}$. Then:

$$
\bigcup B_{n} \subset \bigcup A_{n} \subset \bigcup C_{n}
$$

So:

$$
\bigcup B_{n} \subset A \subset \bigcup C_{n}
$$

And let $C=\cup C_{n}, B=\cup B_{n}$ open.
Exercise to show that $\cup B_{n}$ is closed. Also:

$$
m^{*}(C \backslash B) \leq m^{*}\left(\bigcup_{n=1}^{\infty}\left(C_{n} \backslash B_{n}\right)\right) \leq \sum_{n=1}^{\infty} \frac{\varepsilon}{2^{|n|}}=m \varepsilon
$$

2 General Measures

Let X be any non-empty set.
Definition 3. An algebra of sets on X is a non-empty collection \mathcal{A} that satisfies:

- $Y \in \mathcal{A} \Longrightarrow Y^{c} \in \mathcal{A}$
- $Y_{1}, \ldots, Y_{n} \in \mathcal{A} \Longrightarrow \bigcup_{i=1}^{n} Y_{i} \in \mathcal{A}$

Definition 4. A σ-algebra of sets on X is a non-empty collection of sets \mathcal{A} that satisfies:

- \mathcal{A} is closed under complements
- \mathcal{A} is closed under countable unions

Observations: Collection of measurable sets from Chapter 1 is a σ-algebra.
Example 2. Let X be any infinite set. Consider:

$$
\mathcal{A}=\left\{E \subset X \text { such that } E \text { countable or } E^{c} \text { countable }\right\}
$$

Exercise: check \mathcal{A} is a σ-algebra.
Observations:

- Every σ-algebra is an algebra
- If \mathcal{A} is an algebra, $\varnothing \in \mathcal{A}, X \in \mathcal{A}$
- The word union can be changed with intersection (Exercise)

Proposition 7. An algebra that is closed under countable disjoint unions is a σ-algebra.
Proof. Given $\left\{A_{i}\right\}_{i=1}^{\infty}, A_{i} \in \mathcal{A}$ we want to show:

$$
\bigcup_{i=1}^{\infty} A_{i} \in \mathcal{A}
$$

Construct out of $\left\{A_{i}\right\}_{i=1}^{\infty}$ a collection of pairwise disjoint collection sets B_{i} such that $\cup_{i=1}^{\infty} B_{i}=\bigcup_{i=1}^{\infty} A_{i}$:

$$
\begin{aligned}
& B_{1}:=A_{1} \\
& B_{2}:=A_{2} \backslash A_{1} \\
& B_{n}:=A_{n} \backslash \bigcup_{i=1}^{n-1} A_{i}
\end{aligned}
$$

It is clear they are disjoint by construction

$$
\begin{aligned}
& \bigcup_{i=1}^{n} A_{i}=\bigcup_{i=1}^{n} B_{i} \\
& \bigcup_{i=1}^{\infty} A_{i}=\bigcup_{i=1}^{\infty} B_{i} \in \mathcal{A}
\end{aligned}
$$

Observation: any arbitrary intersection of σ-algebras is a σ-algebra
Definition 5. Let X be a non-empty set, \mathcal{M} a σ-algebra of X. A function $\mu: \mathcal{M} \rightarrow[0, \infty]$ is a measure if it satisfies:

- $\mu(\varnothing)=0$
- Countable additivity i.e $\left\{E_{i}\right\}_{i=1}^{\infty} \subset \mathcal{M}, E_{i}$ pairwise disjoint. Then:

$$
\mu\left(\biguplus_{i=1}^{\infty} E_{i}\right)=\sum_{i=1}^{\infty} \mu\left(E_{i}\right)
$$

Definition 6. Any $\mu: \mathcal{M} \rightarrow[0, \infty]$ such that

- $\mu(\varnothing)=0$
- if $\left\{E_{i}\right\}_{i=1}^{N} \subset \mathcal{M}, E_{i}$ pairwise disjoint, then:

$$
\mu\left(\bigcup_{i=1}^{N} E_{i}\right)=\sum_{i=1}^{N} \mu\left(E_{i}\right)
$$

is called a finitely additive measure (not necessarily a measure).
Notation:

- A pair (X, \mathcal{M}), where X is a non-empty set, \mathcal{M} is a σ-algebra, is called a measurable space.
- A triplet (X, \mathcal{M}, μ) is a measure space.
- Given (X, \mathcal{M}, μ), if $\mu(X)<\infty$ then μ is a finite measure.
- If $\mu(X)=\infty$ but there is a collection of sets $\left\{E_{i}\right\}_{i=1}^{\infty}$ such that $E_{i} \in \mathcal{M}, \cup_{i=1}^{\infty} E_{i}=X$ and $\mu\left(E_{i}\right)<\infty$, then μ is σ-finite.

Example 3. Let $X=\mathbb{R}, \mathcal{M}$ be the collection of measurable sets from Chapter $1, \mu=m^{*}$. Then $\mu(X)=$ $m^{*}(\mathbb{R})=\infty$ but if $E_{n}=[-n, n]$, then $\cup_{n=1}^{\infty} E_{n}=X$ and $\mu\left(E_{n}\right)=2 n<\infty$, so m^{*} is σ-finite.

Remark 2. If whenever $\mu(E)=\infty, E \in \mathcal{M}$, then $\exists F \subset E, F \in \mathcal{M}$ such that $\mu(F)<\infty$ then μ is called a semi-finite measure.

Example 4. Consider a non-empty $X, \mathcal{M}=\mathcal{P}(X)$, let $f: X \rightarrow[0, \infty]$. Define:

$$
\mu(E)=\sum_{x \in E} f(x)
$$

Clearly, $\mu(\varnothing)=0$. Also, countable additivity holds as sums are positive and can be rearranged.

- $f \equiv 1$ then $\mu(E)$ "counts elements".
- Let:

$$
f(x)= \begin{cases}1 & \text { if } x=x_{0} \\ 0 & \text { otherwise }\end{cases}
$$

But, take $A=[-1,1], B=[-2,2], X=\mathbb{R}, x_{0}=0$. Then:

$$
\mu(A \cup B) \neq \mu(A)+\mu(B)
$$

Example 5. Let X be an infinite set, $\mathcal{M}=\mathcal{P}(X)$. Define:

$$
\begin{aligned}
& \mu(E)=0 \\
& \mu(E)=\infty
\end{aligned}
$$

(if E is finite) (if E is infinite)

Claim. This is not a measure but is a finitely additive measure.

Example 6. Let X be an infinite set, and consider:

$$
\mathcal{M}=\left\{E \subset X: E \text { is countable or } E^{c} \text { is countable }\right\}
$$

Define:

$$
\mu(E)= \begin{cases}0 & \text { if } E \text { countable } \\ \infty & \text { otherwise }\end{cases}
$$

Exercise: prove this is a measure.
Theorem 1. Let (X, \mathcal{M}, μ) be a measure space. The following are true:

1. Monotonicity: if $E \subset F, E \in \mathcal{M}, F \in \mathcal{M}$. Then $\mu(E) \leq \mu(F)$.
2. Subadditivity: $\left\{E_{j}\right\} \subset \mathcal{M}$ then:

$$
\mu\left(\bigcup_{j=1}^{\infty} E_{j}\right) \leq \sum_{j=1}^{\infty} \mu\left(E_{j}\right)
$$

3. Continuinity from below: $\left\{E_{j}\right\} \subset M, E_{1} \subset E_{2} \subset E_{3} \subset \ldots$ Then:

$$
\mu\left(\bigcup_{j=1}^{\infty} E_{j}\right)=\lim _{j \rightarrow \infty} \mu\left(E_{j}\right)
$$

4. Continuity from above: $\left\{F_{j}\right\} \subset \mathcal{M}, F_{1} \supset F_{2} \supset F_{3} \supset \ldots$ Then:

$$
\mu\left(\bigcap_{j=1}^{\infty} F_{j}\right)=\lim _{j \rightarrow \infty} \mu\left(F_{j}\right)
$$

Proof.

1. $\mu(F)=\mu(E \cup(F \backslash E))=\mu(E)+\underbrace{\mu(F \backslash E)}_{\geq 0} \Longrightarrow \mu(E) \leq \mu(F)$
2. Construct A_{i} such that A_{i} are pairwise disjoint and $\cup_{i=1}^{\infty} A_{i}=\bigcup_{i=1}^{\infty} E_{i}$:

$$
\begin{aligned}
& A_{1}=E_{1} \\
& A_{2}=E_{2} \backslash E_{1}=E_{2} \cap E_{1}^{c} \\
& \quad \vdots \\
& A_{n}=E_{n} \backslash \bigcup_{i=1}^{n-1} E_{i}=E_{n} \cap\left(\bigcup_{i=1}^{n-1} E_{i}\right)^{c}
\end{aligned}
$$

The $\left\{A_{i}\right\}_{i=1}^{\infty}$ is clearly pairwise disjoint, $A_{i} \in \mathcal{M} \forall i$, and:

$$
\begin{aligned}
\mu\left(\bigcup_{i=1}^{\infty} E_{i}\right)=\mu\left(\bigcup_{i=1}^{\infty} A_{i}\right) & =\sum_{i=1}^{\infty} \mu\left(A_{i}\right) \\
& \leq \sum_{i=1}^{\infty} \mu\left(E_{i}\right)
\end{aligned}
$$

3. $E_{0}=\varnothing$. Define

$$
\begin{aligned}
A_{1} & =E_{1}=E_{1} \backslash E_{0} \\
A_{2} & =E_{2} \backslash E_{1} \\
\quad & \\
A_{i} & =E_{i} \backslash E_{i-1}
\end{aligned}
$$

We can do this because the E_{i} are nested. $A_{i} \in \mathcal{M}, A_{i}$ pairwise disjoint. So:

$$
\begin{aligned}
& \mu\left(\bigcup_{i=1}^{\infty} E_{i}\right)=\mu\left(\biguplus_{i=1}^{\infty} A_{i}\right)=\sum_{i=1}^{\infty} \mu\left(A_{i}\right)=\sum_{i=1}^{\infty} \mu\left(E_{i} \backslash E_{i-1}\right) \\
& =\sum_{i=1}^{\infty}\left(\mu\left(E_{i}\right)-\mu\left(E_{i-1}\right)\right) \\
& =\lim _{n \rightarrow \infty} \sum_{i=1}^{n}\left(\mu\left(E_{i}\right)-\mu\left(E_{i-1}\right)\right) \quad \text { (telescopic sum) } \\
& =\lim _{n \rightarrow \infty} \mu\left(E_{n}\right)-\mu\left(E_{0}\right) \\
& =\lim _{n \rightarrow \infty} \mu\left(E_{n}\right)
\end{aligned}
$$

4. $F_{1} \supset F_{2} \supset \ldots$, define: $B_{i}=F_{i}^{c} \cap F_{1}$. So $F_{1}=B_{i} \cup F_{i} \forall i$, and we have:

$$
F_{1}=\left(\bigcap_{i=1}^{n} F_{i}\right) \cup\left(\bigcup_{i=1}^{n} B_{i}\right)
$$

As we have a disjoint union for F_{1}, we can say that

$$
\begin{gather*}
\mu\left(F_{1}\right)=\mu\left(\bigcap_{i=1}^{\infty} F_{i}\right)+\mu\left(\bigcup_{i=1}^{\infty} B_{i}\right) \tag{*}\\
\mu\left(F_{1}\right)=\mu\left(F_{i}\right)+\mu\left(B_{i}\right) \tag{**}
\end{gather*}
$$

With some playing around and by use of the diagram, we can see that $B_{1} \subset B_{2} \subset B_{3} \subset \ldots$, so

$$
\begin{aligned}
\mu\left(F_{1}\right) & \left.=\mu\left(\bigcap_{i=1}^{\infty} F_{i}\right)+\lim _{i \rightarrow \infty} \mu\left(B_{i}\right) \quad \quad \text { (by applying 3. on }(*) \text { to } \mu\left(\bigcup_{i=1}^{\infty} B_{i}\right)\right) \\
\mu\left(F_{1}\right) & =\lim _{i \rightarrow \infty} \mu\left(F_{i}\right)+\lim _{i \rightarrow \infty} \mu\left(B_{i}\right) \\
\Longrightarrow \lim _{i \rightarrow \infty} \mu\left(F_{i}\right) & =\mu\left(\bigcap_{i=1}^{\infty} F_{i}\right)
\end{aligned}
$$

Definition 7. Let (X, \mathcal{M}, μ) be a measure space. If $E \in \mathcal{M}$ satisfies $\mu(E)=0$, then we say that E is null.
Definition 8. If a statement about points in X is true for all $x \in X$ except for a set of measure 0 , then we say that the statement is true almost everywhere (a.e.).

Observation: $\mu(E)=0$ and $F \subset E$, then $\mu(F)=0$ provided $F \in \mathcal{M}$.
Definition 9. A measure whose domain (i.e \mathcal{M}) contains every subset of every null set is called complete.
Example 7. Consider $(\mathbb{R}, \mathcal{M}, \mu)$ where \mathcal{M} are measurable sets and $\mu=m^{*}$. Then "every point in \mathbb{R} is irrational" is true almost everywhere.

Theorem 2 (Solve lack of completeness of some measures). Let (X, \mathcal{M}, μ) be a measure space. Let:

$$
\begin{aligned}
\mathcal{N} & =\{E \in \mathcal{M}: \mu(E)=0\} \\
\overline{\mathcal{M}} & =\{E \cup F: E \in \mathcal{M}, F \subset N \text { where } N \in \mathcal{N}\}
\end{aligned}
$$

Then $\overline{\mathcal{M}}$ is a σ-algebra, and there exists a unique extension $\bar{\mu}$ of μ to $\overline{\mathcal{M}}$.
Proof. We want to show firstly that $\overline{\mathcal{M}}$ is closed under

1. Countable unions
2. Complements
3. Take $A_{i} \in \overline{\mathcal{M}}$. We want $\bigcup_{i=1}^{\infty} A_{i} \in \overline{\mathcal{M}}$. We can write A_{i} as $A_{i}=E_{i} \cup F_{i}$ with $E_{i} \in \mathcal{M}, F_{i} \subset N_{i}, N_{i} \in \mathcal{N}$.

$$
\bigcup_{i=1}^{\infty} A_{i}=\left(\bigcup_{i=1}^{\infty} E_{i}\right) \cup\left(\bigcup_{i=1}^{\infty} F_{i}\right)
$$

To show $\bigcup_{i=1}^{\infty} A_{i} \in \overline{\mathcal{M}}$, we need $\left(\bigcup_{i=1}^{\infty} E_{i}\right) \in \mathcal{M}$ and $\left(\bigcup_{i=1}^{\infty} F_{i}\right) \subset N$ with $N \in \mathcal{N}$ We know $\left(\bigcup_{i=1}^{\infty} E_{i}\right) \in \mathcal{M}$ because \mathcal{M} is a σ-algebra. Define $N:=\bigcup_{i=1}^{\infty} N_{i}$, so $\left(\bigcup_{i=1}^{\infty} F_{i}\right) \subset \bigcup_{i=1}^{\infty} N_{i}=N \in \mathcal{M}$, because $N_{i} \in \mathcal{M} \Longrightarrow N \in \mathcal{M}$.
We need $\mu(N)=0$, but $\mu(N) \leq \sum_{i=1}^{\infty} \mu\left(N_{i}\right)=0$ so $N \in \mathcal{N}$
2. We need $A \in \overline{\mathcal{M}} \Longrightarrow A^{c} \in \overline{\mathcal{M}}$. Let $A=E \cup F, E \in \mathcal{M}, F \subset N, N \in \mathcal{N}$. w.l.o.g., $E \cap N=\varnothing$ (otherwise take $F \backslash E, N \backslash E$ instead of F and $N)$. Need $(E \cup F)^{c}$ to be in $\overline{\mathcal{M}}$. We need to write $E^{c} \cap F^{c}$ as $\widetilde{E} \cup \widetilde{F}$ with $\widetilde{E} \in \mathcal{M}, \widetilde{F} \subset \widetilde{N} \in \mathcal{N}$.
Using $E \cap N=\varnothing$, we can derive the identity:

$$
E \cup F=(E \cup N) \cap\left(N^{c} \cup F\right)
$$

so:

$$
(E \cup F)^{c}=\underbrace{(E \cup N)^{c}}_{\epsilon \mathcal{M}} \cup \underbrace{\left(N^{c} \cup F\right)^{c}}_{\subset N \in \mathcal{N}}
$$

We need $(E \cup N)^{c} \in \mathcal{M}$ and $\left(N^{c} \cup F\right)^{c} \subset Q, Q \in \mathcal{N}$.
As $E, N \in \mathcal{M} \Longrightarrow(E \cup N)^{c} \in \mathcal{M}$. Also, $\left(N^{c} \cup F\right)^{c}=N \cap F^{c} \subset N$, so by taking $\mathrm{Q}=\mathrm{N}$ we have that $\left(N^{c} \cup F\right)^{c} \subset Q, Q \in \mathcal{N}$
Having shown that $\overline{\mathcal{M}}$ is a σ-algebra, we want to now show there exists a unique $\bar{\mu}$. Given $A \in \overline{\mathcal{M}}$, assume $A=\underbrace{E}_{\in \mathcal{M}} \cup \underbrace{F}_{\subset N \in \mathcal{N}}$. This decomposition is not unique unfortunately. Define $\bar{\mu}(A):=\mu(E)$. It is trivial that $\bar{\mu}$ is an extension. Now w.t.s. $\bar{\mu}$ is well defined and unique. Assume $A=E_{1} \cup F_{1}=E_{2} \cup F_{2}$ where $E_{1}, E_{2} \in \mathcal{M}, F_{1} \subset N_{1} \in \mathcal{N}, F_{2} \subset N_{2} \in \mathcal{N}$. We need:

$$
\mu\left(E_{1}\right)=\mu\left(E_{2}\right)
$$

By sandwiching A in-between two sets that are in \mathcal{M} we have

$$
\begin{aligned}
E_{1} & \subset\left(E_{2} \cup F_{2}\right) \subset E_{2} \cup N_{2} \\
\mu\left(E_{1}\right) & \leq \mu\left(E_{2} \cup N_{2}\right) \leq \mu\left(E_{2}\right)+\underbrace{\mu\left(N_{2}\right)}_{=0}
\end{aligned}
$$

So $\mu\left(E_{1}\right) \leq \mu\left(E_{2}\right)$. By replacing $1 \leftrightarrow 2$ we have $\mu\left(E_{2}\right) \leq \mu\left(E_{1}\right)$

We've defined σ-algebra and measure abstractly. How do you construct σ-algebra?
Observation: an arbitrary intersection of σ-algebra (in X) is a σ-algebra.
Use of observation: Suppose E is a collection of sets in X. We can define $\mathcal{M}(E)$ as the "smallest" σ-algebra that contains E, where "smallest" is the intersection of all σ-algebras. $(\mathcal{M}(E)$ exists because $\mathcal{P}(X)$ is a σ-algebra containing E)
Definition 10. (Borel σ-algebra) The smallest σ-algebra of X that contains the open sets is called the Borel σ-algebra, denoted \mathcal{B}_{X}. What we constructed in Chapter 1 is bigger (the Lebesgue σ-algebra).
Proposition 8. Let $X=\mathbb{R}$ using usual topology.
$\mathcal{B}_{\mathbb{R}}=\mathcal{M}$ (open sets in \mathbb{R}) Then

1. $\mathcal{B}_{\mathbb{R}}=\mathcal{M}$ (intervals $\left.(a, b)\right)$
2. $\mathcal{B}_{\mathbb{R}}=\mathcal{M}([a, b])$
3. $\mathcal{B}_{\mathbb{R}}=\mathcal{M}([a, b))=\mathcal{M}((a, b])$
4. $\mathcal{B}_{\mathbb{R}}=\mathcal{M}((a, \infty))=\mathcal{M}((-\infty, a))$
5. $\mathcal{B}_{\mathbb{R}}=\mathcal{M}([a, \infty))=\mathcal{M}((-\infty, a])$

Proof. Exercise.
The motivation is that soon we will define measurable functions as " $f^{-1}(E)$ is measurable for all E which is measurable" (analogously to continuous functions on open sets in topological spaces). Having the proposition will simplify things. We will need $f^{-1}(G)$ for G in any of the smaller families.

2.1 Product spaces

How do you think of \mathbb{R}^{2} ? \mathbb{R}^{2} or $\mathbb{R} \times \mathbb{R}$? Let X_{α} be non empty sets, $\alpha \in \Lambda$ (in principle an uncountable index set). Consider:

$$
\underline{\bar{X}}:=\prod_{\alpha \in \Lambda} X_{\alpha}
$$

Define $\pi_{\alpha}: \underline{\bar{X}} \rightarrow X_{\alpha}$, where π_{α} is the projection onto the α co-ordinate. The product σ-algebra on $\underline{\bar{X}}$ is the σ - algebra generated by $\left\{\pi_{\alpha}^{-1}\left(E_{\alpha}\right): E_{\alpha} \in \mathcal{M}_{\alpha}\right\}$. This is denoted by:

$$
\bigotimes_{\alpha \in \Lambda} \mathcal{M}_{\alpha}
$$

(Need to check with lecturer)
Proposition 9. The product σ-algebra we've just defined is also the σ-algebra generated by:

$$
\prod_{\alpha \in \Lambda} E_{\alpha}
$$

$$
\left(E_{\alpha} \in \mathcal{M}_{\alpha}\right)
$$

provided Λ is countable.
Definition 11. A Banach space is separable if there exists a countable subset that is dense
Proposition 10. (About Borel sets) Let X_{1}, \ldots, X_{n} be metric spaces.
$X:=\prod_{i=1}^{n} X_{i}$ equipped with the product metric. Then

$$
\bigotimes_{j=1}^{n} \mathcal{B}_{X_{j}} \subseteq \mathcal{B}_{X}
$$

where if the X_{j} are all separable sets then we have equality.

2.2 Outer measures

We need to find a way to construct measures, so we have a definition.
Definition 12. An outer measure in a (non-empty) set X is a function $\mu^{*}: \mathcal{P}(X) \rightarrow[0, \infty]$ that satisfies:

1. $\mu^{*}(\varnothing)=0$
2. If $A \subset B$ then $\mu^{*}(A) \leq \mu^{*}(B)$
3. $\mu^{*}\left(\bigcup_{i=1}^{\infty} A_{i}\right) \leq \sum_{i=1}^{\infty} \mu^{*}\left(A_{i}\right)$

Proposition 11. Let $\mathcal{E} \subset \mathcal{P}(X), X$ non empty, such that $X \in \mathcal{E}, \varnothing \in \mathcal{E}$. Let $p: \mathcal{E} \rightarrow[0, \infty]$ be any function such that $p(\varnothing)=0$. Then define for $A \in \mathcal{P}(X)$:

$$
\mu^{*}(A)=\inf \left\{\sum_{j=1}^{\infty} p\left(E_{j}\right): E_{j} \in \mathcal{E}, A \subset \bigcup_{j=1}^{\infty} E_{j}\right\}
$$

This is an outer measure.
Proof. We need:

1. $\mu^{*}(\varnothing)=0$.

Because $p(\varnothing)=0$, from the definition it follows that $\mu^{*}(\varnothing)=0$.
2. $\mu^{*}(A) \leq \mu^{*}(B)$ whenever $A \subset B$.

This is trivial. Every cover of B is a cover of A. When you look at $\mu^{*}(A)$ you are taking the infimum over a bigger set, so the result follows.
3. $\mu^{*}\left(\bigcup_{i=1}^{\infty} A_{i}\right) \leq \sum_{i=1}^{\infty} \mu^{*}\left(A_{i}\right)$

Consider A_{k}. By properties of infimum there exists $\left\{E_{k, j}\right\}_{j=1}^{\infty}$, where $E_{k, j} \in \mathcal{E}$ such that:

$$
\begin{gather*}
\sum_{j=1}^{\infty} p\left(E_{k, j}\right) \leq \mu^{*}\left(A_{k}\right)+\frac{\varepsilon}{2^{k}} \\
A_{k} \subset \bigcup_{j=1}^{\infty} E_{k, j}
\end{gather*}
$$

and taking unions in k gives:

$$
\bigcup_{k=1}^{\infty} A_{k} \subset \bigcup_{k=1}^{\infty} \bigcup_{j=1}^{\infty} E_{k, j}
$$

(i.e. a countable cover of the set by elements in \mathcal{E}). This implies:

$$
\mu^{*}\left(\bigcup_{k=1}^{\infty} A_{k}\right) \leq \sum_{k=1}^{\infty} \sum_{j=1}^{\infty} p\left(E_{k, j}\right) \leq \sum_{k=1}^{\infty}\left(\mu^{*}\left(A_{k}\right)+\frac{\varepsilon}{2^{k}}\right)=\sum_{k=1}^{\infty} \mu^{*}\left(A_{k}\right)+\varepsilon
$$

By letting $\varepsilon \rightarrow 0$ we get the result.

Definition 13. Let X be non-empty, μ^{*} an outer measure. We say that $A \subset X$ is measurable iff:

$$
\begin{equation*}
\mu^{*}(E)=\mu^{*}(E \cap A)+\mu^{*}\left(E \cap A^{c}\right) \tag{X}
\end{equation*}
$$

Theorem 3. (Caratheodory) Let μ^{*} be an outer measure on a non-empty set X. Then the collection of measurable sets, denoted by \mathbb{M} is a σ-algebra, and moreover the restriction of μ^{*} to \mathbb{M} is a complete measure.

Proof. We want to show that:

1. \mathbb{M} is a σ-algebra i.e.:
a) \mathbb{M} is closed under complements.
b) \mathbb{M} is closed under countable unions.
2. μ is a measure, i.e.:
a) $\mu^{*}(\varnothing)=0$
b) $\mu^{*}\left(\cup_{i=1}^{\infty} A_{i}\right)=\sum_{i=1}^{\infty} \mu^{*}\left(A_{i}\right), A_{i} \in \mathbb{M}$ pairwise disjoint
3. μ is complete.
4. a) This is trivial from the definition (write A^{c} instead of A).
b) We first show that \mathbb{M} is an algebra, then \mathbb{M} is closed under a countable disjoint union, which implies from a previous proposition that \mathbb{M} is a σ-algebra.
Claim. \mathbb{M} is an algebra. Consider $A, B \in \mathbb{M}$. We want $A \cup B \in \mathbb{M}$ (by induction we can then prove it for finite n (exercise)). We know that:

$$
\begin{align*}
& \mu^{*}(E)=\mu^{*}(E \cap A)+\mu^{*}\left(E \cap A^{c}\right) \\
& \mu^{*}(F)=\mu^{*}(F \cap B)+\mu^{*}\left(F \cap B^{c}\right)
\end{align*}
$$

We want:

$$
\mu^{*}(E)=\mu^{*}(E \cap(A \cup B))+\mu^{*}\left(E \cap(A \cup B)^{c}\right)
$$

So by using the definition of A and B being measurable we have

$$
\begin{aligned}
\mu^{*}(E) & =\mu^{*}(E \cap A)+\mu\left(E \cap A^{c}\right) \\
& =\mu^{*}(E \cap A \cap B)+\mu^{*}\left(E \cap A \cap B^{c}\right)+\mu^{*}\left(E \cap A^{c} \cap B\right)+\underbrace{\mu^{*}\left(E \cap A^{c} \cap B^{c}\right)}_{=\mu^{*}\left(E \cap(A \cup B)^{c}\right)}
\end{aligned}
$$

We want to show:

$$
\mu^{*}(E) \geq \mu^{*}(E \cap(A \cup B))+\mu^{*}\left(E \cap(A \cup B)^{c}\right)
$$

so if:

$$
\mu^{*}(E \cap A \cap B)+\mu^{*}\left(E \cap A \cap B^{c}\right)+\mu^{*}\left(E \cap A^{c} \cap B\right) \geq \mu^{*}(E \cap(A \cup B))
$$

then we're done. By set theory, $A \cup B \subset\left((A \cap B) \cup\left(A \cap B^{c}\right) \cup\left(A^{c} \cap B\right)\right)$.
So $E \cap(A \cup B) \subset\left((E \cap A \cap B) \cup\left(E \cap A \cap B^{c}\right) \cup\left(E \cap A^{c} \cap E\right)\right)$, hence by properties of outer measure we've shown $A \cup B$ is measurable.
Assume $A \cap B=\varnothing, A, B \in \mathbb{M}$. Take $E=A \cup B$. As A is measurable:

$$
\begin{gathered}
\mu^{*}(E)=\mu^{*}(E \cap A)+\mu^{*}\left(E \cap A^{c}\right) \\
\Downarrow \\
\mu^{*}(A \cup B)=\mu^{*}(A)+\mu^{*}(B)
\end{gathered}
$$

By induction we can show that $\mu^{*}\left(\bigcup_{i=1}^{N} A_{i}\right)=\sum_{i=1}^{N} \mu^{*}\left(A_{i}\right)$, with A_{i} pairwise disjoint. Hence we have shown that \mathbb{M} is an algebra. To show it is a σ-algebra, it is enough to show $\left\{A_{i}\right\}_{i=1}^{\infty}, A_{i}$ pairwise disjoint, $A_{i} \in \mathbb{M} \Longrightarrow \bigcup_{i=1}^{\infty} A_{i} \in \mathbb{M}$
Let $B=\bigcup_{i=1}^{\infty} A_{i}, B_{n}=\biguplus_{i=1}^{n} A_{i}$

We know $B_{n} \in \mathbb{M}$. We want $B \in \mathbb{M}$, i.e. $\mu^{*}(E)=\mu^{*}(E \cap B)+\mu^{*}\left(E \cap B^{c}\right)$. Since $A_{i} \in \mathbb{M}$:

$$
\mu^{*}(F)=\mu^{*}\left(F \cap A_{n}\right)+\mu^{*}\left(F \cap A_{n}^{c}\right)
$$

Take $F=E \cap B_{n}$

$$
\begin{aligned}
\mu^{*}\left(E \cap B_{n}\right) & =\mu^{*}\left(E \cap B_{n} \cap A_{n}\right)+\mu^{*}\left(E \cap B_{n} \cap A_{n}^{c}\right) \\
& =\mu^{*}\left(E \cap A_{n}\right)+\mu^{*}\left(E \cap B_{n-1}\right) \\
& =\mu^{*}\left(E \cap A_{n}\right)+\mu^{*}\left(E \cap A_{n-1}\right)+\mu^{*}\left(E \cap B_{n-2}\right) \text { (inductively) } \\
& =\sum_{i=1}^{n} \mu^{*}\left(E \cap A_{i}\right)
\end{aligned}
$$

Details for the proof on the left

$$
\begin{aligned}
B_{n} \cap A_{n} & =A_{n} \\
\left(\bigcup_{i=1}^{n} A_{n}\right) \cap A_{n} & =A_{n} \\
B_{n} \cap A_{n}^{c} & =B_{n-1} \\
\cup_{i=1}^{n} A_{i} \cap A_{n}^{c} & =\left(\bigcup_{i=1}^{n-1} A_{i} \cup A_{n}\right) \cap A_{n}^{c} \\
& =\bigcup_{i=1}^{n-1} \underbrace{\left(A_{i} \cap A_{n}^{c}\right)}_{=A_{i}}
\end{aligned}
$$

$$
\begin{aligned}
B_{n} \in \mathbb{M} \Rightarrow \mu^{*}(E) & =\mu^{*}\left(E \cap B_{n}\right)+\mu^{*}\left(E \cap B_{n}^{c}\right) \\
& \geq \mu^{*}\left(E \cap B_{n}\right)+\mu^{*}\left(E \cap B^{c}\right) \\
& =\sum_{i=1}^{n}\left(E \cap A_{i}\right)+\mu^{*}\left(E \cap B^{c}\right)
\end{aligned}
$$

$$
\begin{aligned}
B_{n} & \subset B \\
B^{c} & \subset B_{n}^{c} \\
\left(E \cap B^{c}\right) & \subset\left(E \cap B_{n}^{c}\right) \\
\mu^{*} & \text { outer measure so } \\
\mu^{*}\left(E \cap B^{c}\right) & \geq \mu^{*}\left(E \cap B_{n}^{c}\right)
\end{aligned}
$$

$$
\begin{aligned}
\underbrace{\text { LHS }}_{\text {indep. of } n} & \geq \underbrace{\text { RHS }}_{\text {dep. of } n} \Rightarrow \text { LHS } \geq \lim _{n \rightarrow \infty} \text { RHS } \\
\mu^{*}(E) & \geq \sum_{i=1}^{\infty} \mu^{*}\left(E \cap A_{i}\right)+\mu^{*}\left(E \cap B^{c}\right) \\
& \left.\geq \mu^{*}(E \cap B)+\mu^{*}\left(E \cap B^{c}\right)(*) \text { (Reason: } E \cap B \subset \bigcup\left(E \cap A_{i}\right)\right)
\end{aligned}
$$

So 1 is complete.
2. a) Trivial.
b) Rewrite * for $E=B$:

$$
\mu^{*}\left(\biguplus_{i=1}^{\infty} A_{i}\right)=\mu^{*}(B)=\sum_{i=1}^{\infty} \mu^{*}\left(B \cap A_{i}\right)+\mu^{*}\left(B \cap B^{c}\right)=\sum_{i=1}^{\infty} \mu^{*}\left(B \cap A_{i}\right)=\sum_{i=1}^{\infty} \mu^{*}\left(A_{i}\right)
$$

3. We require that if $A \in \mathbb{M}, \mu^{*}(A)=0$ then for every $W \subset A$ we have $W \in \mathbb{M}$. Take $W \subset A \in \mathbb{M}$. We want:

$$
\mu^{*}(E) \geq \mu^{*}(E \cap W)+\mu^{*}\left(E \cap W^{c}\right)
$$

$E \cap W \subset E \cap A \subset A$, so:

$$
\underbrace{\mu^{*}(E \cap W)}_{=0} \leq \mu^{*}(E \cap A) \leq \mu^{*}(A)=0
$$

So we need $\mu^{*}(E) \geq \mu^{*}\left(E \cap W^{c}\right)$. This is trivial as $E \cap W^{c} \subset E$.

- Mechanism for constructing σ-algebra.
- We have a way (Caratheodory) to construct measures that come with a σ-algebra.

Need a family ξ and a family ρ
The outcome is that a measure and a σ-measure of measurable sets.
In general $\mathbb{M}(\xi)$ is not the σ-algebra of measurable sets!

- In $\mathbb{R}, \xi=$ open intervals $\rightarrow \mathbb{M}(\xi)=$ Borel set.

What comes out of Caratheodory is strictly bigger. That σ-algebra is called the Lebesgue σ-algebra, denoted by \mathcal{L}
\mathcal{L} is the completion of \mathcal{B}
Theorem 4 (Describing all possible measures in $\mathbb{R}, \mathcal{B}_{\mathbb{R}}$). If $F: \mathbb{R} \rightarrow \mathbb{R}$ is increasing, right continuous, then there exists a unique Borel measure, μ_{F} that satisfies $\mu_{F}([a, b])=F(b)-F(a)$ (If there exists another such function G then $G=F+$ constant $)$. Conversely, if μ is a measure in $\left(\mathbb{R}, \mathcal{B}_{\mathbb{R}}\right)$ that is finite on all bounded sets then the function:

$$
F(x)= \begin{cases}\mu((0, x]) & \text { if } x>0 \\ 0 & \text { if } x=0 \\ \mu([-x, 0)) & \text { if } x<0\end{cases}
$$

is increasing, right continuous, and $\mu_{F}=\mu$.

3 Measurable Functions and Integration

Let $f: X \rightarrow Y,(X, \mathcal{M}),(Y, \mathcal{N})$ be measurable spaces.
Definition 14. Given $(X, \mathcal{M}),(Y, \mathcal{N})$ measure spaces, $X, Y \neq \varnothing$, we say that $f: X \rightarrow Y$ is measurable iff $f^{-1}(E) \in \mathcal{M} \forall E \in \mathcal{N}$.

Observation: the composition of measurable functions is measurable.

$$
(X, \mathcal{M}) \xrightarrow{f}(Y, \mathcal{N}) \xrightarrow{g}(Z, \mathcal{O})
$$

$(\mathcal{M}, \mathcal{N}, \mathcal{O} \sigma$-algebras in X, Y, Z respectively $)$
Exercise: Decide whether or not this is true for $f: X \rightarrow Y$,

$$
\begin{aligned}
f\left(\bigcup E_{n}\right) & =\bigcup f\left(E_{n}\right) & f^{-1}\left(\bigcup E_{n}\right) & =\bigcup f^{-1}\left(E_{n}\right) \\
f\left(\bigcap E_{n}\right) & =\bigcap f\left(E_{n}\right) & f^{-1}\left(\bigcap E_{n}\right) & =\bigcap f^{-1}\left(E_{n}\right) \\
f\left(E^{c}\right) & =(f(E))^{c} & f^{-1}\left(E^{c}\right) & =\left(f^{-1}(E)\right)^{c}
\end{aligned}
$$

Proposition 12. Let $(X, \mathcal{M}),(Y, \mathcal{N})$ be measurable spaces, $f: X \rightarrow Y$. Assume that \mathcal{N} is generated by a collection ξ, i.e. the smallest σ-algebra $\mathcal{M}(\xi)=\mathcal{N}$ containing ξ is \mathcal{N}. Then:

$$
\left.f \text { is measurable (i.e. } f^{-1}(F) \in \mathcal{M} \forall F \in \mathcal{N}\right) \Longleftrightarrow f^{-1}(E) \in \mathcal{M} \forall E \in \xi
$$

Proof.
$\Longrightarrow: f$ is measurable by definition: $f^{-1}(F) \in \mathcal{M} \forall F \in \mathcal{N}$.
$\Longleftarrow:$ Look at the collection of sets, G, for which $f^{-1}(G) \in \mathcal{M}$. Let $\left\{G: f^{-1}(G) \in \mathcal{M}\right\}=\Omega$. First, $\xi \subset \Omega$. Now, Ω is a σ-algebra by ${ }^{*} . \mathcal{N}=\mathcal{M}(\xi) \subset \Omega$.

Proposition 13 (Corollary). $f: X \rightarrow \mathbb{R} .(X, \mathcal{M}),\left(\mathbb{R}, \mathcal{B}_{\mathbb{R}}\right)$. Then the following are equivalent:
a) f is measurable from (X, \mathcal{M}) into $\left(\mathbb{R}, \mathcal{B}_{\mathbb{R}}\right)$
b) $f^{-1}((a, \infty)) \in \mathcal{M} \forall a$
c) $f^{-1}([a, \infty)) \in \mathcal{M} \forall a$
d) $f^{-1}((-\infty, c)) \in \mathcal{M} \forall c$
e) $f^{-1}((-\infty, c]) \in \mathcal{M} \forall c$

Corollary 1. Let X, Y be metric spaces, then every continuous function is measurable from (X, β_{X}) to $\left(Y, \mathcal{B}_{Y}\right)$.

Proof.
f continuous $\Longleftrightarrow f^{-1}(U)$ open $\forall U$ open in Y
$f^{-1}(U)$ open $\forall U \Longrightarrow f^{-1}(U)$ is in $\mathcal{B}_{x} \forall U$ open $\Longrightarrow f$ is measurable.
For most of this course, $Y=\mathbb{R}$ or $Y=\mathbb{C}$.
Definition 15. Given (X, \mathcal{M}) measurable space with $X \neq \varnothing$ and $f: X \rightarrow \mathbb{R}$ (or \mathbb{C}), we say f is (X, \mathcal{M}) measurable if f is measurable from (X, \mathcal{M}) to $\left(\mathbb{R}, \mathcal{B}_{\mathbb{R}}\right)$ (or $\left(\mathbb{C}, \mathcal{B}_{\mathbb{C}}\right)$).

Definition 16. Let $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ (or \mathbb{C}). We say f is Borel measurable if f is measurable from $\left(\mathbb{R}^{n}, \mathcal{B}_{\mathbb{R}^{n}}\right)$ into $\left(\mathbb{R}, \mathcal{B}_{\mathbb{R}}\right)\left(\operatorname{or}\left(\mathbb{R}, \mathcal{B}_{\mathbb{C}}\right)\right)$.
Definition 17. We say f is Lebesgue measurable if f is measurable from $\left(\mathbb{R}^{n}, \mathcal{L}\right)$ into $\left(\mathbb{R}, \mathcal{B}_{\mathbb{R}}\right)$ (or $\left(\mathbb{C}, \mathcal{B}_{\mathbb{C}}\right)$), where \mathcal{L} in \mathbb{R}^{n} is the completion of $\mathcal{B}_{\mathbb{R}^{n}}$.

Remark 3. Composition of Borel measurable functions is Borel measurable but the composition of Lebesgue measurable functions is not necessarily Lebesgue measurable!
Example 8. Let $\mathbb{R} \xrightarrow{g} \mathbb{R} \xrightarrow{f} \mathbb{R}$. Consider $(f \circ g)^{-1}(E)$.

- Clear that E Borel, f and g Borel measurable, then $f^{-1}(E)$ Borel $\Longrightarrow g^{-1}\left(f^{-1}(E)\right)$ Borel.
- But if f, g Lebesgue measurable then E Borel $\Longrightarrow f^{-1}(E)$ is Lebesgue $\Longrightarrow g^{-1}\left(f^{-1}(E)\right)$ not necessarily Lebesgue.
- If f Borel, g Lebesgue, then $f \circ g$ is Lebesgue.

Proposition 14. Let $(X, \mathcal{M}), f: X \rightarrow \mathbb{R}, g: X \rightarrow \mathbb{R}$. If f, g are measurable, then $|f|, f+g$, min (f, g), $\max (f, g), f \cdot g$ are measurable. So is $c f$ for $c \in \mathbb{R}$.
Proof. By previous proposition, only need to check f^{-1} for a family that generates $\mathcal{B}_{\mathbb{R}}$.
$f+g$:

$$
\begin{align*}
f^{-1}(E) & \in \mathcal{M} & \left(\forall E \in \mathcal{B}_{\mathbb{R}}\right) \tag{R}\\
g^{-1}(E) & \in \mathcal{M} & \left(\forall E \in \mathcal{B}_{\mathbb{R}}\right) \\
(f+g)^{-1}((a, \infty)) & =\bigcup_{r \in \mathbb{Q}}(\{f>r\} \cap\{g>a-r\}) &
\end{align*}
$$

(Notation: $\left.\{f>r\}=f^{-1}((r, \infty))=\{x: f(x)>r\}\right)$
Therefore, $f+g$ measurable as it is a countable union of measurable sets.
$c f:$ If $c=0$:

$$
(c f)^{-1}((a, \infty))= \begin{cases}X & \text { if } a<0 \\ \varnothing & \text { otherwise }\end{cases}
$$

If $c>0$:

$$
(c f)^{-1}((a, \infty))=\{c f>a\}=\left\{f>\frac{a}{c}\right\}
$$

$|f|:(|f|)^{-1}((a, \infty))=\{f>a\} \cup\{f<-a\}$
$\min (f, g):\{\min (f, g)>a\}=\{f>a\} \cap\{g>a\}$
$\max (f, g):\{\max (f, g)>a\}=\{f>a\} \cup\{g>a\}$
$f \cdot g$: Show f^{2} is measurable (exercise).

$$
(f+g)^{2}=f^{2}+g^{2}+2 f \cdot g \Longrightarrow f \cdot g=\frac{(f+g)^{2}-f^{2}-g^{2}}{2}
$$

Proposition 15. Let $f_{j}: X \rightarrow \mathbb{R} \cup\{-\infty, \infty\}$, f_{j} measurable. Then $\sup _{j} f_{j}$ and $\inf _{j} f_{j}$ are measurable. So are $\liminf _{j \rightarrow \infty} f_{j}, \limsup _{j \rightarrow \infty} f_{j}$, and $\lim _{j \rightarrow \infty} f_{j}$.
Proof.

$$
\begin{aligned}
\left\{\inf _{j} f_{j}<a\right\} & =\bigcup_{j=1}^{\infty}\left\{f_{j}<a\right\} \\
\left\{\sup _{j} f_{j}>a\right\} & =\bigcup_{j=1}^{\infty}\left\{f_{j}>a\right\} \\
\liminf _{j \rightarrow \infty} f_{j} & =\sup _{k} \inf _{j \geq k} f_{j} \\
\limsup _{j \rightarrow \infty} f_{j} & =\inf _{k} \sup _{j \geq k} f_{j} \\
\lim _{j \rightarrow \infty} f_{j} & =\liminf _{j \rightarrow \infty} f_{j}=\limsup _{j \rightarrow \infty} f_{j}
\end{aligned}
$$

Alternate proof. Let $f:=\lim _{j \rightarrow \infty} f_{j}$

$$
\{f>a\}=\bigcup_{m=1}^{\infty} \bigcup_{N=1}^{\infty} \bigcap_{n=N}\left\{f_{n}>a+\frac{1}{m}\right\}
$$

Remark 4. We need not define a measure to talk about measurable functions (like continuous functions in topology).

3.1 Devil's staircase

This procedure provides $\left\{f_{n}\right\}_{n=1}^{\infty}$. Let $f:=\lim _{n \rightarrow \infty} f_{n} . f_{n}$ are continuous and uniformly continuous (exercise). Properties:

- $f(0)=0, f(1)=1$.
- f^{\prime} exists on every open interval we remove (and equals 0).
- $f(1)-f(0) \neq \int_{0}^{1} f^{\prime}(x) d x$.
- The derivative is 0 on a set of measure 1 .
- $f($ Cantor set $C)$ has measure 1. $f($ complement of $C) \subset\left\{\frac{c}{2^{n}}: c \in\left\{0,1, \ldots, 2^{n}\right\}\right\} \subset \mathbb{Q}$, so has measure 0 .
- Except for the points $\left\{\frac{c}{2^{n}}\right\}$ the function has an inverse. Let $x \in[0,1]$ be written in base 3 as:

$$
x=\sum_{n=1}^{\infty} \frac{\varepsilon_{n}}{3^{n}}
$$

$$
(\varepsilon \in\{0,1,2\})
$$

Cantor set points are where $\varepsilon_{n} \in\{0,2\} \forall n$. Then:

$$
f(x)= \begin{cases}\frac{1}{2} \sum_{n=1}^{\infty} \frac{\varepsilon_{n}}{2^{n}} & \text { if } x \in C \\ \text { unique constant such that } f \text { is continuous } & \text { otherwise }\end{cases}
$$

As for the inverse of f (call it g), write:

$$
y=\sum_{n=1}^{\infty} \frac{\varepsilon_{n}}{2^{n}}
$$

$$
\left(\varepsilon_{n}=0,1\right)
$$

Now:

$$
g(y)=\sum_{n=1}^{\infty} \frac{2 \varepsilon_{n}}{3^{n}}
$$

$$
\text { (for } y \neq\left\{\frac{c}{2^{n}}\right\} \text {) }
$$

g maps $[0,1] \backslash\left\{\frac{c}{2^{n}}\right\}$ into the Cantor set. $g(E) \subset C$ so it is measurable. $g^{-1}(g(E))=E$, so the inverse
Inside is a measurable set, say E.
of a measurable set $g(E)$ is not measurable (g, which arose as the inverse of a continuous function, is not Borel measurable).

3.2 Integration for $f: X \rightarrow[0, \infty]$

Definition 18. Let (X, \mathcal{M}) be a measurable space. χ_{E} is a characteristic function (indicator function) $i f:$

$$
\chi_{E}(x)= \begin{cases}1 & \text { if } x \in E \\ 0 & \text { if } x \in E^{c}\end{cases}
$$

Definition 19. A function f is simple if it takes finitely many values. i.e. if $\exists N \in \mathbb{N}$ and $E_{1}, \ldots, E_{N} \subset X$ such that $f(x)=\sum_{j=1}^{N} \alpha_{j} \chi_{E_{j}}(x)$.
Definition 20. $f: X \rightarrow \mathbb{R}$ (or \mathbb{C}) is simple measurable if $\exists N \in \mathbb{N},\left\{E_{1}, \ldots, E_{N}\right\} \subset \mathcal{M}$ such that $f=$ $\sum_{j=1}^{N} \alpha_{j} \chi_{E_{j}}$.
Definition 21. For a simple function f we say it is written in standard form if $E_{j}=f^{-1}\left(\alpha_{j}\right)$.

Theorem 5. Let (X, \mathcal{M}) be a measurable space, $f:(X, \mathcal{M}) \rightarrow\left(\overline{\mathbb{R}}, \mathcal{B}_{\overline{\mathbb{R}}}\right)$ for $\overline{\mathbb{R}}=\mathbb{R} \cup\{ \pm \infty\}$
a) If $f: X \rightarrow[0, \infty]$ measurable, then there is a sequence $\left\{\phi_{i}\right\}_{i=1}^{\infty}$ of simple measurable functions such that:

$$
0 \leq \phi_{1} \leq \phi_{2} \leq \ldots \leq f
$$

and such that $\lim _{i \rightarrow \infty} \phi_{i}(x)=f(x) \forall x \in X$. Moreover, $\phi_{i} \rightarrow f$ uniformly on any subset where f is bounded.
b) If $f: X \rightarrow \mathbb{R}$ (or \mathbb{C}) is measurable, then there is a sequence $\left\{\phi_{j}\right\}_{j=1}^{\infty}$ of measurable simple functions such that:

$$
0 \leq\left|\phi_{1}\right| \leq\left|\phi_{2}\right| \leq \ldots \leq|f|
$$

and such that $\lim _{j \rightarrow \infty} \phi_{j}(x)=f(x) \forall x \in X$. Moreover, $\phi_{j} \rightarrow f$ uniformly on any subset where f is bounded.

Notation:

- $\phi_{j} \rightrightarrows f$ means ϕ_{j} converges to f uniformly.
- a.e. means almost everywhere.

Proof.
a) For $n=1,2, \ldots$, define:

$$
\begin{aligned}
& E_{n}^{k}=f^{-1}\left(\left[\frac{k}{2^{n}}, \frac{k+1}{2^{n}}\right)\right) \\
& F_{n}=f^{-1}\left(\left[2^{n}, \infty\right)\right)
\end{aligned}
$$

Then $E_{n}^{k}, F_{n} \subset X$. Define:

$$
\phi_{n}=\sum_{k=0}^{2^{2 n}-1} \frac{k}{2^{n}} \chi_{E_{n}^{k}}+2^{n} \chi_{F_{n}}
$$

Claim.

- $\phi_{j} \leq \phi_{j+1} \leq f, \forall j=1,2, \ldots$
- $\phi_{j} \rightarrow f, \phi \rightrightarrows f$ on f bounded.

b) $f: X \rightarrow \mathbb{R}$ (or \mathbb{C}). Define:

$$
\begin{aligned}
& f^{+}=\max \{f, 0\} \\
& f^{-}=\max \{-f, 0\}
\end{aligned}
$$

Now, $f^{+}+f^{-}=|f|$ and $f^{+}-f^{-}=f, f^{+}$and f^{-}are measurable, $f^{+}, f^{-}: X \rightarrow[0, \infty]$. To each one, apply part a) to get $\left\{\phi_{n}^{+}\right\},\left\{\phi_{n}^{-}\right\}$. Define $\phi_{n}=\phi_{n}^{+}-\phi_{n}^{-}$. For $f: X \rightarrow \mathbb{C}, f=\mathfrak{R}(f)+i \mathfrak{I}(f)$ with $\mathfrak{R}(f), \mathfrak{I}(f): X \rightarrow \mathbb{R}$ and apply the real case to each.

Proposition 16. Let (X, \mathcal{M}, ν), ν complete, $f: X \rightarrow \mathbb{R}$ (or \mathbb{C}) be a measurable function ($\mathcal{B}_{\mathbb{R}}$ or $\left.\mathcal{B}_{\mathbb{C}}\right)$. If $g=f$ a.e. then g is measurable.

Proposition 17. Let (X, \mathcal{M}, ν), ν complete, $f_{n} \rightarrow f$ a.e. with f_{n} measurable. Then f is also measurable.

Define:

$$
\mathcal{L}^{+}:=\{f: f: X \rightarrow[0, \infty], f \text { is measurable }\}
$$

Let (X, \mathcal{M}, ν) and $f \in \mathcal{L}^{+}$, then:

$$
\int f d \nu:=\sum_{k=1}^{N} a_{k} \nu\left(A_{k}\right)
$$

For $f=\sum_{k=1}^{N} a_{k} \chi_{A_{k}}$ in standard representation. Also, for A measurable:

$$
\int_{A} f d \nu:=\int \underbrace{f \cdot \chi_{A}}_{\text {simple }} d \nu
$$

Proposition 18. The integral of a simple function $f=\sum_{1}^{N} a_{n} \mathbb{1}_{A_{n}}$ where A_{n} are disjoint is $\int f d \mu:=\sum a_{n} \mu A_{n}$.
Proof. See Notes from Jose.
Proposition 19. If $f=\sum_{1}^{N} b_{j} \mathbb{1}_{B_{j}}$, then $\int f d \mu=\sum b_{j} \mathbb{1}_{B_{j}}$
Proof. Let the measurable sets $\left\{C_{i i \in[m]}\right\}$ be the unique coarsest partition of $\cup B_{j}$ such that for any $j \in[N]$, we can write each nonempty B_{j} as a disjoint union of C_{i}.
For each i, let $I(i)$ be the unique indexing set such that $j \in I(i)$ iff $C_{i} \subset B_{j}$. Thus by construction,

$$
\bigsqcup_{i: j \in I(i)} C_{i}=B_{j}
$$

And also

$$
f=\sum_{j=1}^{N} b_{j} \mathbb{1}_{B_{j}}=\sum_{i=1}^{M}\left(\sum_{j \in I(i)} b_{j}\right) \mathbb{1}_{C_{i}}
$$

Then

$$
\int f d \mu=\sum_{i=1}^{M}\left(\sum_{j \in I(i)} b_{j}\right) \mu\left(C_{i}\right)=\sum_{j=1}^{N} b_{j} \sum_{i: j \in I(i)} \mu\left(C_{i}\right)=\sum_{j=1}^{N} b_{j} \mu\left(B_{j}\right)
$$

Proposition 20. Let $f \in \mathcal{L}^{+}, f=\sum_{j=1}^{M} b_{j} \chi_{B_{j}}$, not necessarily in standard form, then:

$$
\int f d \nu=\sum_{j=1}^{M} b_{j} \nu\left(B_{j}\right)
$$

Proof. Let $f=\sum_{k=1}^{N} a_{k} \chi_{A_{k}}$ in standard form.

$$
\int f d \nu=\sum_{k=1}^{N} a_{k} \nu\left(A_{k}\right)
$$

Assume one $a_{k}=0$ and one of $b_{j}=0$, so that:

$$
\bigcup_{k=1}^{N} A_{k}=X=\bigcup_{j=1}^{M} B_{j}
$$

$\left\{B_{j}\right\}$ may not be disjoint, but we know $\left\{A_{k}\right\}$ are.

$$
B_{j}=B_{j} \cap X=B_{j} \cap\left(\biguplus_{k=1}^{N} A_{k}\right)=\bigcup_{k=1}^{N}\left(B_{j} \cap A_{k}\right)
$$

Therefore:

$$
\begin{aligned}
\sum_{j=1}^{M} b_{j} \nu\left(B_{j}\right) & =\sum_{j=1}^{M} b_{j} \nu\left(\bigcup_{k=1}^{N} B_{j} \cap A_{k}\right) \\
& =\sum_{j=1}^{M} \sum_{k=1}^{N} b_{j} \nu\left(B_{j} \cap A_{k}\right) \\
& =\sum_{j=1}^{M} \sum_{k=1}^{N} a_{k} \nu\left(B_{j} \cap A_{k}\right) \\
& =\sum_{k=1}^{N} a_{k} \sum_{j=1}^{M} \nu\left(B_{j} \cap A_{k}\right)
\end{aligned}
$$

Assume for now that $\left\{B_{j}\right\}$ are pairwise disjoint, then:

$$
\begin{aligned}
\int f d \mu=\sum_{k=1}^{N} a_{k} \mu\left(A_{k}\right) & =\sum_{k=1}^{N} \sum_{j=1}^{M} a_{k} \mu\left(A_{k} \cap B_{j}\right) \\
& =\sum_{j=1}^{M} \sum_{k=1}^{N} b_{j} \mu\left(A_{k} \cap B_{j}\right) \\
& =\sum_{j=1}^{N} b_{j} \mu\left(B_{j}\right)
\end{aligned}
$$

The proof pauses here.
Proposition 21. Let ϕ, ψ be measurable, simple, nonnegative, then:

1. $\int c \phi d \mu=c \int \phi d \mu(c>0)$
2. $\int \phi+\psi d \mu=\int \phi d \mu+\int \psi d \mu$
3. If $\phi(x) \leq \psi(x) \forall x \in X$ then $\int \phi d \mu \leq \int \psi d \mu$.
4. Fix ϕ, then the map $A \mapsto \int_{A} \phi d \mu$ is a measure $\forall A \in \mathcal{M}$. Call it ν.

Proof.

1. Trivial as $c \phi$ is simple. So $\int \phi d \mu=\sum_{k=1}^{N} a_{k} \mu\left(A_{k}\right)$ in standard form. Then:

$$
\int c \phi d \mu=\sum_{k=1}^{N} c a_{k} \mu\left(A_{k}\right)=c \sum_{k=1}^{N} a_{k} \mu\left(A_{k}\right)=c \int \phi d \mu
$$

2. Assume:

$$
\left.\begin{array}{l}
\phi=\sum_{k=1}^{N} a_{k} \chi_{A_{k}} \\
\psi=\sum_{j=1}^{M} b_{j} \chi_{B_{j}}
\end{array}\right\} \text { in standard form }
$$

and assume $\cup_{k=1}^{N} A_{k}=X=\cup_{j=1}^{M} B_{j}$:

$$
\begin{aligned}
\int \phi d \mu+\int \psi d \mu & =\sum_{k=1}^{N} a_{k} \mu\left(A_{k}\right)+\sum_{j=1}^{M} b_{j} \mu\left(B_{j}\right) \\
& =\sum_{k=1}^{N} a_{k} \mu\left(A_{k} \cap \bigcup_{j=1}^{M} B_{j}\right)+\sum_{j=1}^{M} b_{j}\left(B_{j} \cap \bigcup_{k=1}^{N} A_{k}\right) \\
& =\sum_{k=1}^{N} a_{k} \mu\left(\biguplus_{j=1}^{M}\left(A_{k} \cap B_{j}\right)\right)+\sum_{j=1}^{M} b_{j} \mu\left(\biguplus_{k=1}^{N}\left(B_{j} \cap A_{k}\right)\right) \\
& =\sum_{k=1}^{N} \sum_{j=1}^{M} a_{k} \mu\left(A_{k} \cap B_{j}\right)+\sum_{j=1}^{M} \sum_{k=1}^{N} b_{j} \mu\left(B_{j} \cap A_{k}\right) \\
& =\sum_{j=1}^{M} \sum_{k=1}^{N}\left(a_{k}+b_{j}\right) \mu\left(A_{k} \cap B_{j}\right)
\end{aligned}
$$

Now:

$$
\begin{aligned}
\phi & =\sum_{k=1}^{N} a_{k} \chi_{A_{k}}=\sum_{k=1}^{N} a_{k} \chi_{A_{k} \cap \cup_{j=1}^{M} B_{j}}=\sum_{k=1}^{N} a_{k} \chi_{\cup_{j=1}^{M}\left(A_{k} \cap B_{j}\right)}=\sum_{k=1}^{N} a_{k} \sum_{j=1}^{M} \chi_{A_{k} \cap B_{j}} \\
\psi & =\sum_{j=1}^{M} b_{j} \chi_{B_{j}}=\sum_{j=1}^{M} b_{j} \chi_{B_{j} \cap \cup_{k=1}^{N} A_{k}}=\sum_{j=1}^{M} b_{j} \chi_{\cup_{k=1}^{N}\left(A_{k} \cap B_{j}\right)}=\ldots \\
\Longrightarrow \phi+\psi & =\sum_{j=1}^{M} \sum_{k=1}^{N}\left(a_{k}+b_{j}\right) \chi_{A_{k} \cap B_{j}}
\end{aligned}
$$

So $\int \phi d \mu+\int \psi d \mu=\int \phi+\psi d \mu$.

Back to our original proof for a bit:
Proof. Let $\phi=\sum_{i=1}^{T} c_{i} \chi_{E_{i}}$ be measurable simple. Let:

$$
\phi=\phi_{1}+\phi_{2}+\ldots+\phi_{T}
$$

where $\phi_{i}=c_{i} \chi_{E_{i}}$ is in standard form. Then:

$$
\begin{aligned}
\int \phi d \mu=\int \phi_{1}+\phi_{2}+\ldots+\phi_{T} d \mu & =\int \phi_{1} d \mu+\ldots+\int \phi_{T} d \mu \\
& =\sum_{i=1}^{T} \int \phi_{i} d \mu \\
& =\sum_{i=1}^{T} c_{i} \int \chi_{E_{i}} d \mu \\
& =\sum_{i=1}^{T} c_{i} \mu\left(E_{i}\right)
\end{aligned}
$$

Back to the proof of the proposition:
Proof.
3. $\phi(x)=\sum_{k=1}^{N} a_{k} \chi_{A_{k}}$ and $\psi(x)=\sum_{j=1}^{M} b_{j} \chi_{B_{j}}$ in standard form, $\cup_{k=1}^{N} A_{k}=X=\cup_{j=1}^{M} B_{j}$. From previous argument:

$$
\begin{aligned}
& \phi(x)=\sum_{k=1}^{N} \sum_{j=1}^{M} a_{k} \chi_{A_{k} \cap B_{j}} \\
& \psi(x)=\sum_{k=1}^{N} \sum_{j=1}^{M} b_{j} \chi_{A_{k} \cap B_{j}}
\end{aligned}
$$

$\left\{A_{k} \cap B_{j}\right\}$ are pairwise disjoint. Consider $x \in A_{k} \cap B_{j} \neq \varnothing$ for some i, j.

$$
\phi(x)=a_{k}, \psi(x)=b_{j} \Longrightarrow a_{k} \leq b_{j}
$$

So:

$$
\int \phi d \mu=\sum_{j=1}^{M} \sum_{k=1}^{N} a_{k} \mu\left(A_{k} \cap B_{j}\right) \leq \sum_{k=1}^{M} \sum_{j=1}^{M} b_{j} \mu\left(A_{k} \cap B_{j}\right)=\int \psi d \mu
$$

4. Need:

- $\nu(\varnothing)=0$
- $\nu\left(\cup_{i=1}^{\infty} A_{i}\right)=\sum_{i=1}^{\infty} \nu\left(A_{i}\right)$

Where $A=\cup_{i=1}^{\infty} A_{i}$. Write $\phi=\sum_{j=1}^{M} b_{j} \chi_{B_{j}}$ standard form with $\cup_{j=1}^{M} B_{j}=X$.

$$
\begin{aligned}
\int_{A} \phi d \mu=\int \phi \chi_{A} d \mu & =\int \sum_{j=1}^{M} b_{j} \chi_{B_{j}} \chi_{A} d \mu \\
& =\int \sum_{j=1}^{M} b_{j} \chi_{B_{j} \cap A} d \mu \\
& =\sum_{j=1}^{M} b_{j} \mu\left(B_{j} \cap A\right) \\
& =\sum_{j=1}^{M} b_{j} \mu\left(B_{j} \cap \biguplus_{i=1}^{\infty} A_{i}\right)=\sum_{j=1}^{M} b_{j} \mu\left(\biguplus_{i=1}^{\infty}\left(B_{j} \cap A_{i}\right)\right) \\
& =\sum_{j=1}^{M} b_{j} \mu\left(\lim _{n \rightarrow \infty} \biguplus_{i=1}^{n}\left(B_{j} \cap A_{i}\right)\right) \\
& =\sum_{j=1}^{M} b_{j} \lim _{n \rightarrow \infty} \mu\left(\biguplus_{i=1}^{n}\left(B_{j} \cap A_{i}\right)\right) \\
& =\sum_{j=1}^{M} b_{j} \lim _{n \rightarrow \infty} \sum_{i=1}^{n} \mu\left(B_{j} \cap A_{i}\right) \\
& =\sum_{i=1}^{\infty} \sum_{j=1}^{M} b_{j} \mu\left(B_{j} \cap A_{i}\right) \\
& =\sum_{i=1}^{\infty} \int \sum_{j=1}^{M} b_{j} \chi_{B_{j} \cap A_{i}} d \mu \\
& =\sum_{i=1}^{\infty} \int \sum_{j=1}^{M} b_{j} \chi_{B_{j}} \chi_{A_{i}} d \mu \\
& =\sum_{i=1}^{\infty} \int_{A_{i}} \phi d \mu=\sum_{i=1}^{\infty} \nu\left(A_{i}\right)
\end{aligned}
$$

Define $\mathcal{L}^{+}=\{\mathrm{f}: \mathrm{f}$ is measurable and non-negative $\}$. Then we define $\int f d \mu:=\sup \left\{\int \phi d \mu: \phi\right.$ simple measurable, $0 \leq$ $\phi \leq f\}$

$$
\begin{aligned}
\int f d \mu & \leq \int g d \mu & \left(\text { if } f \leq g, f, g \in \mathcal{L}^{+}\right) \\
\int c f d \mu & =c \int f d \mu & (\text { for } c \geq 0)
\end{aligned}
$$

But we don't know that $\int f+g d \mu=\int f d \mu+\int g d \mu$
Theorem 6 (Monotone convergence). Let (X, \mathcal{M}, μ) be a measure space, $\left\{f_{n}\right\}_{n=1}^{\infty} \subset \mathcal{L}^{+}$. If $f_{n} \leq f_{n+1} \forall n$, then:

$$
\lim _{n \rightarrow \infty} \int f_{n} d \mu=\int \lim _{n \rightarrow \infty} f_{n} d \mu
$$

Proof. First, $\lim _{n \rightarrow \infty} f_{n}$ exists as $\left(f_{n}\right)$ is a monotone sequence in \mathbb{R}^{+}and measurable by an earlier theorem.

$$
f_{m} \leq \lim _{n \rightarrow \infty} f_{n} \Longrightarrow \int f_{m} d \mu \leq \int \lim _{n \rightarrow \infty} f_{n} d \mu
$$

Take limits to get:

$$
\lim _{m \rightarrow \infty} \int f_{m} d \mu \leq \int \lim _{n \rightarrow \infty} f_{n} d \mu
$$

Fix ϕ as a simple measurable function:

$$
0 \leq \phi \leq f=\lim _{n \rightarrow \infty} f_{n}
$$

Fix $\alpha \in(0,1)$. Define $E_{n}=\left\{x \in X: f_{n}(x) \geq \alpha \phi(x)\right\}$. Claim that $\cup_{n=1}^{\infty} E_{n}=X$ (because $f_{n}(x) \nearrow f(x)$ and $\alpha \phi(x)<f(x)$ for $f(x) \neq 0)$. Consider:

$$
\begin{aligned}
& \lim _{n \rightarrow \infty} \int_{E_{n}} \phi d \mu=\int_{X} \phi d \mu \\
& \lim _{n \rightarrow \infty} \nu\left(E_{n}\right) \underbrace{=}_{\text {by continuity }} \nu\left(\bigcup_{n=1}^{\infty} E_{n}\right)=\nu(X)
\end{aligned}
$$

(With vertical equals signs to add)
We know:

$$
\int_{E_{n}} \alpha \phi d \mu \leq \int_{E_{n}} f_{n} d \mu \leq \int_{X} f_{n} d \mu \leq \int_{X} f_{n+1} d \mu \leq \lim _{n \rightarrow \infty} \int_{X} f_{n} d \mu
$$

Thus:

$$
\lim _{m \rightarrow \infty} \int_{E_{m}} \alpha \phi d \mu \leq \lim _{n \rightarrow \infty} \int f_{n} d \mu
$$

So:

$$
\begin{aligned}
\lim _{n \rightarrow \infty} \int f_{n} d \mu & \geq \int \alpha \phi d \mu \\
\Longrightarrow \lim _{n \rightarrow \infty} \int f_{n} d \mu & \geq \sup _{\phi}\left\{\int \alpha \phi d \mu: 0 \leq \phi \leq f\right\} \\
& =\int \alpha f d \mu \\
& =\alpha \int f d \mu \\
\Longrightarrow \lim _{n \rightarrow \infty} \int f_{n} d \mu & \geq \sup _{\alpha}\left\{\alpha \int f d \mu\right\} \\
& =\int f d \mu
\end{aligned}
$$

Example 9 (Counterexamples). Let:

- $f_{n}=\chi_{[n, n+1]}, f_{n}(x) \rightarrow 0 \forall x$.
- $g_{n}=n \chi_{\left(0, \frac{1}{n}\right)}, g_{n}(x) \rightarrow 0 \forall x$.
$\int f_{n}=1$ and $\int g_{n}=1 \forall n$, but $\int f=0$ and $\int g=0$.
The monotone convergence theorem (MCT) implies we do not need to take the supremum over all $0 \leq \phi \leq f$ in the definition of $\int f d \mu$. It's enough to take one family $\left\{\phi_{n}\right\}_{n=1}^{\infty}$ of simple measurable functions such that $0 \leq \phi_{n} \leq \phi_{n+1}$ and $\phi_{n}(x) \rightarrow f(x) \forall x$.

$$
\mathrm{MCT} \Longrightarrow \lim _{n \rightarrow \infty} \int \phi_{n} d \mu=\int \lim _{n \rightarrow \infty} \phi_{n} d \mu=\int f d \mu
$$

Recall that we proved a theorem that shows the existence of at least one such family $\left\{\phi_{n}\right\}_{n=1}^{\infty}$.
Theorem 7. $(X, \mathcal{M}, \mu),\left\{f_{n}\right\}_{n=1}^{\infty} \subset \mathcal{L}^{+}$then:

$$
\int \sum_{n=1}^{\infty} f_{n} d \mu=\sum_{n=1}^{\infty} \int f_{n} d \mu
$$

(this proves that $\int f+g d \mu=\int f d \mu+\int g d \mu$)
Proof. Take:

- $\left\{\phi_{n}\right\}_{n=1}^{\infty}$ measurable simple, $0 \leq \phi_{n} \leq \phi_{n+1} \forall n, \phi_{n} \nearrow f$.
- $\left\{\psi_{n}\right\}_{n=1}^{\infty}$ measurable simple, $0 \leq \psi_{n} \leq \psi_{n+1} \forall n, \psi_{n} \nearrow g$.

We know, by the MCT:

$$
\begin{aligned}
& \lim _{n \rightarrow \infty} \int \phi_{n} d \mu=\int f d \mu \\
& \lim _{n \rightarrow \infty} \int \psi_{n} d \mu=\int g d \mu
\end{aligned}
$$

Also, $\phi_{n}+\psi_{n} \nearrow f+g$, so:

$$
\lim _{n \rightarrow \infty} \int\left(\phi_{n}+\psi_{n}\right) d \mu=\int(f+g) d \mu
$$

We also know that:

$$
\int \phi_{n}+\psi_{n} d \mu=\int \phi_{n} d \mu+\int \psi_{n} d \mu
$$

So now just need to check:

$$
\lim _{n \rightarrow \infty}\left(\int \phi_{n} d \mu+\int \psi_{n} d \mu\right)=\lim _{n \rightarrow \infty} \int \phi_{n} d \mu+\lim _{n \rightarrow \infty} \int \psi_{n} d \mu
$$

As everything is non-negative, it is true by Analysis I. So, by induction:

$$
\int \sum_{n=1}^{N} f_{n} d \mu=\sum_{n=1}^{N} \int f_{n} d \mu
$$

Let $g_{N}=\sum_{n=1}^{N} f_{n} d \mu$. We have:

$$
f_{n} \geq 0 \Longrightarrow g_{N} \leq g_{N+1}
$$

and:

$$
g_{N} \nearrow \sum_{n=1}^{\infty} f_{n}
$$

By MCT:

$$
\begin{aligned}
\int \lim _{N \rightarrow \infty} g_{N} d \mu & =\lim _{N \rightarrow \infty} \int g_{N} d \mu \\
\Longrightarrow \int \sum_{n=1}^{\infty} f_{n} d \mu & =\lim _{N \rightarrow \infty} \int \sum_{n=1}^{N} f_{n} d \mu \\
& =\lim _{N \rightarrow \infty} \sum_{n=1}^{N} \int f_{n} d \mu \\
& =\sum_{n=1}^{\infty} \int f_{n} d \mu
\end{aligned}
$$

Theorem 8. $(X, \mathcal{M}, \mu), f \in \mathcal{L}^{+}$. Then:

$$
\int f d \mu=0 \Longleftrightarrow f=0 \text { a.e. }
$$

Proof. Notice that the statement is trivial, for measurable simple functions $\phi=\sum_{n=1}^{N} a_{n} \chi_{E_{n}}, a_{k} \geq 0$, as we know:

$$
\int \phi d \mu=\sum_{n=1}^{N} a_{n} \mu\left(E_{n}\right)
$$

and:

$$
\sum_{k=1}^{N} a_{n} \mu\left(E_{n}\right)=0 \Longleftrightarrow \phi=0 \text { a.e. }
$$

as:

$$
\begin{aligned}
\sum_{k=1}^{N} a_{n} \mu\left(E_{n}\right)=0 & \Longleftrightarrow a_{n} \mu\left(E_{n}\right)=0 & & (\forall n \in\{1, \ldots, N\}) \\
& \Longleftrightarrow \text { either } a_{n}=0 \text { or } \mu\left(E_{n}\right)=0 & & (\forall n \in\{1, \ldots, N\})
\end{aligned}
$$

So $\{x: \phi(x) \neq 0\}$ is a finite union of sets of measure 0 . Now we look at general $f \in \mathcal{L}^{+}$.

$$
\int f d \mu=\sup \left\{\int \phi d \mu: 0 \leq \phi \leq f, \phi \text { simple measurable }\right\}
$$

Suppose:

$$
\begin{aligned}
f=0 \text { a.e. } & \Longrightarrow \forall \phi \leq f \text { measurable simple, we have } \phi=0 \text { a.e. } \\
& \Longrightarrow \text { for those } \phi, \int \phi d \mu=0 \\
& \Longrightarrow \int f d \mu=\sup \{0\}=0
\end{aligned}
$$

Next, want to show $\int f d \mu=0 \Longrightarrow f=0$ a.e.
Look at:

$$
\{x: f(x) \neq 0\}=\bigcup_{n=1}^{\infty} \underbrace{\left\{f \geq \frac{1}{n}\right\}}_{E_{n}}
$$

Then:

$$
\underbrace{\int f d \mu}_{=0} \geq \int_{E_{n}} f d \mu \geq \int_{E_{n}} \frac{1}{n} d \mu=\int \frac{1}{n} \chi_{E_{n}} d \mu=\frac{1}{n} \mu\left(E_{n}\right)
$$

$\Longrightarrow \mu\left(E_{n}\right)=0$
$\Longrightarrow \mu(\{x: f(x) \neq 0\}) \leq \sum_{n=1}^{\infty} \mu\left(E_{n}\right)=0$

Corollary 2. $\left\{f_{n}\right\}_{n=1}^{\infty} \subset \mathcal{L}^{+}, f_{n} \leq f_{n+1}$ a.e. Then:

$$
\int \lim _{n \rightarrow \infty} f_{n} d \mu=\lim _{n \rightarrow \infty} \int f_{n} d \mu
$$

(By $\lim _{n \rightarrow \infty} f_{n}$ we mean the $\lim _{n \rightarrow \infty} f_{n}(x)$ where it exists and 0 otherwise)
Proof. $f_{n} \not \nearrow f$ in E with $\mu\left(E^{c}\right)=0$.

$$
\begin{aligned}
& \int_{E} f_{n} d \mu=\int f_{n} d \mu \\
& \int_{E} f d \mu=\int f d \mu \\
& \underbrace{\int f d \mu}_{=\int \lim _{n \rightarrow \infty} f_{n} d \mu}=\int_{E} f d \mu=\int_{E} \lim _{n \rightarrow \infty} f_{n} d \mu=\lim _{n \rightarrow \infty} \int_{E} f_{n} d \mu=\lim _{n \rightarrow \infty} \int f_{n} d \mu
\end{aligned}
$$

Warning: in general, we do not have:

$$
\lim _{n \rightarrow \infty} \int f_{n} d \mu=\int \lim _{n \rightarrow \infty} f_{n} d \mu
$$

but...
Lemma 2 (Fatou's Lemma). Let $\left\{f_{n}\right\}_{n=1}^{\infty} \subset \mathcal{L}^{+},(X, \mathcal{M}, \mu)$, then:

$$
\int \liminf _{n \rightarrow \infty} f_{n} d \mu \leq \liminf _{n \rightarrow \infty} \int f_{n} d \mu
$$

Proof. Recall $\lim \inf _{n \rightarrow \infty}=\sup _{k} \inf _{n \geq k} f_{n} . \inf _{n \geq k} f_{n} \leq f_{j}$ for every $j \geq k$, which implies:

$$
\int \inf _{n \geq k} f_{n} d \mu \leq \int f_{j} d \mu
$$

(Let $g_{k}=\inf _{n \geq k} f_{n}$, then g_{k} monotone increasing)

$$
\begin{array}{r}
\int \inf _{n \geq k} f_{n} d \mu \leq \inf _{j \geq k} \int f_{j} d \mu \\
\lim _{k \rightarrow \infty} \int g_{k} d \mu \leq \lim _{k \rightarrow \infty} \inf _{j \geq k} \int f_{j} d \mu \\
\Longrightarrow \int \liminf _{k \rightarrow \infty} \inf _{n \geq k} d \mu \leq \lim _{k \rightarrow \infty} \inf _{j \geq k} \int f_{j} d \mu \\
\Longrightarrow \int \liminf _{n \rightarrow \infty} f_{n} d \mu \leq \liminf _{n \rightarrow \infty} \int f_{n} d \mu
\end{array}
$$

Corollary 3. $(X, \mathcal{M}, \mu),\left\{f_{n}\right\}_{n=1}^{\infty} \subset \mathcal{L}^{+}$, assume $\lim _{n \rightarrow \infty} f_{n}=f$ a.e. Then:

$$
\int f d \mu \leq \liminf _{n \rightarrow \infty} \int f_{n} d \mu
$$

Proof. Exercise.

3.3 Integration for general $f: X \rightarrow \mathbb{R} \cup\{ \pm \infty\}$

Definition 22. Let $f: X \rightarrow \mathbb{R} \cup\{ \pm \infty\}$ measurable, $f=f^{+}-f^{-}$with $f^{+}, f^{-} \geq 0$. Then assuming at most one of $\int f^{+} d \mu, \int f^{-} d \mu$ is infinite, we define:

$$
\int f d \mu:=\int f^{+} d \mu-\int f^{-} d \mu
$$

Definition 23. We say f is integrable $i f f \int f^{+} d \mu$ and $\int f^{-} d \mu$ are finite. This is equivalent to $\int|f| d \mu<\infty$.
Proposition 22. The space of integrable functions is a vector space. The integral is a linear functional in that vector space.
Proof. If f, g are integrable then $a f+b g$ integrable $\forall a, b \in \mathbb{R}$. As $|a f+b g| \leq|a||f|+|b||g|$, we have:

$$
\begin{aligned}
\int|a f+b g| d \mu & \leq \int|a||f| d \mu+\int|b||g| d \mu \\
& =|a| \int|f| d \mu+|b| \int|g| d \mu<\infty
\end{aligned}
$$

A functional is a map from a space of functions to \mathbb{R} (or \mathbb{C}). So define:

$$
I(f):=\int f d \mu
$$

We need:

1. $I(a f)=a I(f)$
2. $I(f+g)=I(f)+I(g)$
3.

$$
\begin{align*}
I(a f) & =\int a f d \mu \\
& =\int(a f)^{+} d \mu-\int(a f)^{-} d \mu
\end{align*}
$$

There are three cases to this:
Case 1. $a=0$, then trivial as both sides are null.
Case 2. $a>0$, then $(a f)^{+}=a(f)^{+}$and $(a f)^{-}=a(f)^{-}$, which implies:

$$
\begin{aligned}
I(a f) & =\int a f^{+} d \mu-\int a f^{-} d \mu \\
& =a \int f^{+} d \mu-a \int f^{-} d \mu \\
& =a \int f d \mu
\end{aligned}
$$

Case 3. $a<0$, exercise.
2. Let $h=f+g$. Then:

$$
\begin{aligned}
& f=f^{+}-f^{-} \\
& g=g^{+}-g^{-} \\
& h=h^{+}-h^{-}=f^{+}-f^{-}+g^{+}-g^{-} \\
& \Longrightarrow \quad h^{+}+f^{-}+g^{-}=f+g^{+}+h^{-} \\
& \Longrightarrow \quad \int h^{+}+f^{-}+g^{-} d \mu=\int f^{+}+g^{+}+h^{-} d \mu \\
& \Longrightarrow \quad \int f^{-} d \mu+\int g^{-} d \mu=\int f^{+} d \mu+\int g^{+} d \mu+\int h^{-} d \mu \quad \text { (as everything is positive) } \\
& \Longrightarrow \quad \int h^{+} d \mu-\int h^{-} d \mu=\int f^{+} d \mu-\int f^{-} d \mu+\int g^{+} d \mu-\int g^{-} d \mu
\end{aligned}
$$

Remark 5. For $f: X \rightarrow \mathbb{C}$, define:

$$
\int f d \mu:=\int \mathfrak{R}(f) d \mu+i \int \mathfrak{I}(f) d \mu
$$

Then, as long as everything is finite, everything translates to the complex case.
Notation: (X, \mathcal{M}, μ), we define $\mathcal{L}^{1}(X, \mathcal{M}, \mu)$ (a.k.a. $\mathcal{L}^{1}(\mu)$ or $\left.\mathcal{L}^{1}(X)\right)$ to be the space of integrable functions $\left(\int|f| d \mu<\infty\right)$.

Proposition 23. $(X, \mathcal{M}, \mu), f: X \rightarrow \mathbb{R}$ (or $\mathbb{C})$:

$$
\left|\int f d \mu\right| \leq \int|f| d \mu
$$

Proof.
(\mathbb{R})

$$
\left|\int f d \mu\right|=\left|\int f^{+} d \mu-\int f_{\text {triangle inequality }}^{-} d \mu\right| \leq \underbrace{\leq} d \mu+\int f^{-} d \mu=\int f^{+}+f^{-} d \mu=\int\left|f^{+}+f^{-}\right| d \mu
$$

(\mathbb{C}) First, if $\int f d \mu=0$ then nothing to prove, so assume $\int f d \mu \neq 0$ and define:

$$
\alpha=\frac{\overline{\int f d \mu}}{\left|\int f d \mu\right|}
$$

Observe:

$$
\left|\int f d \mu\right|=\frac{\left(\int f d \mu\right)\left(\overline{\int f d \mu}\right)}{\left|\int f d \mu\right|}=\alpha \int f d \mu
$$

and $\left|\int f d \mu\right| \in \mathbb{R}_{+}$, so:

$$
\begin{aligned}
\left|\int f d \mu\right|=\alpha \int f d \mu & =\mathfrak{R}\left(\alpha \int f d \mu\right) \\
& =\mathfrak{R}\left(\int \alpha f d \mu\right) \\
& =\int \mathfrak{R}(\alpha f) d \mu \quad \text { (definition of complex integral) } \\
& =\left|\int \mathfrak{R}(\alpha f) d \mu\right| \quad \text { (as it's in } \mathbb{R}_{+} \text {) } \\
& \leq \int|\mathfrak{R}(\alpha f)| d \mu \\
& \leq \int|\alpha f| d \mu \\
& =\int|\alpha| \cdot|f| d \mu \\
& =|\alpha| \int|f| d \mu \\
& =\left|\frac{\int f d \mu}{\left|\int f d \mu\right|}\right| \int|f| d \mu \\
& =\int|f| d \mu
\end{aligned}
$$

Proposition 24. Let $f \in \mathcal{L}^{1}$:
a) $\{x: f(x) \neq 0\}$ is σ-finite and $\{x: f(x) \in\{ \pm \infty\}\}$ has measure 0 .
b) Let $f, g \in \mathcal{L}^{1}$, then:

$$
\int_{E} f d \mu=\int_{E} g d \mu \forall E \in \mathcal{M} \Longleftrightarrow \int|f-g| d \mu=0 \Longleftrightarrow f=g \text { a.e. }
$$

Definition 24. A set is σ-finite if we can write it as a countable union of sets that have finite measure.
Proof of proposition.
a) We only do the real case: w.l.o.g. assume f is non-negative (otherwise do same thing for f^{+}and f^{-}):

$$
f: X \rightarrow[0, \infty] \Longrightarrow\{f \neq 0\}=\{f>0\}=\bigcup_{n=1}^{\infty}\left\{f>\frac{1}{n}\right\}
$$

Need to check that $\mu\left(\left\{f>\frac{1}{n}\right\}\right)<\infty$. We use Chebychev's inequality:

$$
\infty>\int f d \mu \geq \int f \chi_{\left\{f>\frac{1}{n}\right\}} d \mu \geq \int \frac{1}{n} \chi_{\left\{f>\frac{1}{n}\right\}} d \mu=\frac{1}{n} \mu\left(\left\{f>\frac{1}{n}\right\}\right)
$$

The second part is an exercise.
b) Assume $f=g$ a.e. Therefore:

$$
f-g=0 \text { a.e. } \Longrightarrow \underbrace{|f-g|}_{\text {non-negative }}=0 \text { a.e. } \Longrightarrow \int|f-g| d \mu=0
$$

by earlier proof of nonnegative case. Now, assume $\int|f-g| d \mu=0$. Then:

$$
\left|\int_{E} f d \mu-\int_{E} g d \mu\right|=\left|\int_{E} f-g d \mu\right| \leq \int_{E}|f-g| d \mu \leq \int|f-g| d \mu=0 \Longrightarrow \int_{E} f d \mu=\int_{E} g d \mu
$$

Now, assume $\int_{E} f d \mu=\int_{E} g d \mu \forall E$ and $f, g: X \rightarrow \mathbb{R}$. Note:

$$
\{f \neq g\}=\{f-g>0\} \cup\{g-f>0\}
$$

So enough to show $\{f-g>0\}$ has measure 0 . Let:

$$
E=\{f-g>0\} \underbrace{=}_{\text {so } E \text { is measurable }}(f-g)^{-1}((0, \infty])
$$

For this E we have $\int_{E} f-g d \mu=0$.

$$
E=\{f-g>0\}=\bigcup_{n=1}^{\infty}\left\{f-g>\frac{1}{n}\right\}
$$

For contradiction, assume $\mu(E)>0$:

$$
\mu\left(\left\{f-g>\frac{1}{n}\right\}\right) \nsucc \mu(E)>0
$$

Which implies $\exists n$ such that $\mu\left(\left\{f-g>\frac{1}{n}\right\}\right)>0$. Therefore:

$$
\int_{E} f-g d \mu \leq \int_{\left\{f-g>\frac{1}{n}\right\}} f-g d \mu \geq \int_{\left\{f-g>\frac{1}{n}\right\}} \frac{1}{n} d \mu=\frac{1}{n} \mu\left(\left\{f-g>\frac{1}{n}\right\}\right)>0
$$

So $f=g$ a.e.

We have \mathcal{L}^{1}, the space of measurable functions such that $\int|f|<\infty$. Try to define a norm:

$$
\|f\|:=\int|f| d \mu
$$

Would hope for:

- $\|f\| \geq 0, \underbrace{\|f\|=0 \Longleftrightarrow f=0}$
the bit that fails
- $\|\lambda f\|=|\lambda|\|f\|$ for $\lambda \in \mathbb{R}$
- $\|f+g\| \leq\|f\|+\|g\|$

How to fix the first property? We define an equivalence relation:

$$
f \sim g \Longleftrightarrow f=g \text { a.e. }
$$

Define:

$$
L^{1}=\mathcal{L}^{1} / \sim
$$

(Note: $\left.[0]=\left[\chi_{\mathbb{Q}}\right]\right)$
Now, L^{1} is a metric space. We define:

$$
\begin{aligned}
{[f]+[g] } & =[f+g] \\
\lambda[f] & =[\lambda f]
\end{aligned}
$$

In L^{1}, we can define:

$$
\|[f]\| \underbrace{}_{\sim} \int|f| d \mu
$$

well defined by a previous theorem
Notation: we generally ignore the square brackets for practical purposes.
Theorem 9 (Dominated Convergence Theorem). Let $\left\{f_{n}\right\}_{n=1}^{\infty}, f_{n} \in L^{1}$ such that:
a) $f_{n} \rightarrow f$ a.e.
b) $\exists g \in L^{1}$ such that $0 \leq\left|f_{n}\right| \leq g \forall n$. Then:

$$
\lim _{n \rightarrow \infty} \int f_{n} d \mu=\int \lim _{n \rightarrow \infty} f_{n} d \mu
$$

Proof. $\left|f_{n}\right| \leq g \Longrightarrow g-f_{n} \geq 0$ and $f_{n}+g \geq 0$
Then apply Fatou's Lemma, which is:

$$
\int \liminf _{n \rightarrow \infty} h_{n} d \mu \leq \liminf _{n \rightarrow \infty} \int h_{n} d \mu
$$

for $h_{n} \geq 0$.

$$
\begin{array}{ll}
\Longrightarrow & \int \lim _{n \rightarrow \infty}\left(g-f_{n}\right) d \mu \leq \liminf _{n \rightarrow \infty} \int\left(g-f_{n}\right) d \mu \\
\text { and } & \int \lim _{n \rightarrow \infty}\left(g+f_{n}\right) d \mu \leq \liminf _{n \rightarrow \infty} \int\left(g+f_{n}\right) d \mu \\
\Longrightarrow \quad & \int g-\lim _{n \rightarrow \infty} f_{n} d \mu \leq \liminf _{n \rightarrow \infty}\left(\int g d \mu-\int f_{n} d \mu\right) \\
\text { and } & \int g+\lim _{n \rightarrow \infty} f_{n} d \mu \leq \liminf _{n \rightarrow \infty}\left(\int g d \mu+\int f_{n} d \mu\right) \\
\Longrightarrow \quad & \int g d \mu-\int f d \mu \leq \int g d \mu-\limsup _{n \rightarrow \infty} \int f_{n} d \mu \quad\left(\liminf _{n \rightarrow \infty}\left(-a_{n}\right)=-\lim \sup _{n \rightarrow \infty}\left(a_{n}\right)\right) \\
& \int g d \mu+\int f d \mu \leq \int g d \mu+\liminf _{n \rightarrow \infty} \int f_{n} d \mu \\
\Longrightarrow \quad & \limsup _{n \rightarrow \infty} \int f_{n} d \mu \leq \int f d \mu \leq \liminf _{n \rightarrow \infty} \int f_{n} d \mu \\
\quad \int f d \mu=\lim _{n \rightarrow \infty} \int f_{n} d \mu
\end{array}
$$

Theorem 10. $\left\{f_{j}\right\}_{j=1}^{\infty} \subset L^{1}$, assume $\sum_{n=1}^{\infty} \int\left|f_{n}\right| d \mu<\infty$. Then $\sum_{j=1}^{\infty} f_{j}$ converges a.e. Moreover:

$$
\left.\sum_{j=1}^{\infty} f_{j} \in L^{1} \quad \text { (i.e. } \int\left|\sum_{j=1}^{\infty} f_{j}\right| d \mu<\infty\right)
$$

and:

$$
\sum_{n=1}^{\infty} \int f_{n} d \mu=\int \sum_{n=1}^{\infty} f_{n} d \mu
$$

Proof. By the monotone convergence theorem:

$$
\infty>\sum_{k=1}^{\infty} \int\left|f_{k}\right| d \mu=\int \sum_{k=1}^{\infty}\left|f_{k}\right| d \mu
$$

since:

$$
\int \sum_{k=1}^{\infty}\left|f_{k}\right| d \mu<\infty \underbrace{\Longrightarrow}_{\text {proposition }} \sum_{k=1}^{\infty}\left|f_{k}\right|<\infty \text { a.e. }
$$

Next, define $h_{k}=\sum_{n=1}^{k} f_{n}$. We want that $\lim _{k \rightarrow \infty} \int h_{k} d \mu=\int \lim _{k \rightarrow \infty} h_{k} d \mu$. Notice:

$$
\left|h_{k}\right|=\left|\sum_{n=1}^{k} f_{n}\right| \leq \sum_{n=1}^{k}\left|f_{n}\right| \leq \underbrace{\sum_{n=1}^{\infty}\left|f_{n}\right|}_{\epsilon L^{1}}<\infty
$$

So, by the dominated convergence theorem:

$$
\int \lim _{k \rightarrow \infty} h_{k} d \mu=\lim _{k \rightarrow \infty} \int h_{k} d \mu
$$

Theorem 11. L^{1} is complete.
Proof. Need to show that if $\left\{f_{n}\right\}_{n=1}^{\infty}$ is Cauchy then $\underbrace{\exists f \in L^{1}}_{1 .}$ such that $\underbrace{f_{n} \rightarrow f}_{2 .}$.

1. Assume w.l.o.g. that $f_{1} \equiv 0$.

$$
f_{n}-f_{1}=f_{n}-f_{n-1}+f_{n-1}-\ldots+f_{2}-f_{1}
$$

So:

$$
f_{n}=\sum_{j=1}^{n-1} f_{j+1}-f_{j}
$$

Assume (by taking a subsequence) that $\left\|f_{n+1}-f_{n}\right\| \leq \frac{\varepsilon}{2^{n}}$. Denote $g_{j}:=f_{j+1}-f_{j}$. Look at:

$$
\sum_{j=1}^{\infty} \int\left|g_{j}\right| d \mu \leq \sum_{j=1}^{\infty}\left\|f_{j+1}-f_{j}\right\| \leq \sum_{j=1}^{\infty} \frac{\varepsilon}{2^{j}}=\varepsilon
$$

By previous theorem:

$$
\sum_{j=1}^{\infty} g_{j}<\infty \text { a.e. } \Longrightarrow \sum_{j=1}^{\infty} f_{j+1}-f_{j}<\infty \text { a.e. }
$$

Define: $f:=\sum_{j=1}^{\infty} f_{j+1}-f_{j}$ and $f \in L^{1}$ by theorem.
2. (Want $\left\|f-f_{n}\right\| \rightarrow 0$ as $n \rightarrow \infty$)

$$
\left\|f-f_{n}\right\|=\left\|\left(\sum_{j=1}^{\infty} f_{j+1}-f_{j}\right)-\left(\sum_{j=1}^{n-1} f_{j+1}-f_{j}\right)\right\|=\left\|\sum_{j=n}^{\infty} f_{j+1}-f_{j}\right\| \leq \sum_{j=1}^{\infty}\left\|f_{j+1}-f_{j}\right\| \leq \sum_{j=n}^{\infty} \frac{\varepsilon}{2^{j}} \leq \frac{\varepsilon}{2^{n}}
$$

Proposition 25 (Simple functions are dense in $\left.L^{1}\right)$. Let $f \in L^{1}(X, \mathcal{M}, \mu)$, then $\forall \varepsilon>0 \exists \phi$ simple measurable such that:

$$
\|f-\phi\|=\int|f-\phi| d \mu<\varepsilon
$$

If $X=\mathbb{R}$, μ the Lebesgue measure, then ϕ can be taken as $\phi=\sum_{j=1}^{N} a_{j} \chi_{E_{j}}$ where E_{j} are open intervals. Moreover, $\exists g$ continuous such that $\int|f-g| d \mu<\varepsilon$.

Proof. If $f: X \rightarrow[0, \infty]$ and $\exists \phi_{n}$ simple measurable such that:

$$
0 \leq \phi_{1} \leq \phi_{2} \leq \ldots \leq \phi_{n} \leq \ldots \leq f
$$

(Want to show that $\int\left|f-\phi_{n}\right| d \mu \rightarrow 0$) Let $h_{n}:=f-\phi_{n}$. Then:

$$
\left|h_{n}\right| \leq|f|+\left|\phi_{n}\right| \leq 2|f|
$$

By DCT:

$$
\lim _{n \rightarrow \infty} \int h_{n} d \mu=\int \lim _{n \rightarrow \infty} h_{n} d \mu=\int 0 d \mu=0
$$

In general case we know $f: X \rightarrow \mathbb{R}$ (or \mathbb{C}). We know:

$$
0 \leq\left|\phi_{1}\right| \leq\left|\phi_{2}\right| \leq \ldots \leq\left|\phi_{n}\right| \leq \ldots \leq|f|
$$

Let $h_{n}:=\left|f-\phi_{n}\right|$, then $h_{n} \leq|f|+\left|\phi_{n}\right| \leq 2|f|$ and so $\lim _{n \rightarrow \infty} \int h_{n} d \mu=0$ by DCT. Now, a sketch of the "moreover" statement. $X=\mathbb{R}, \mu=$ Lebesgue. $\forall \varepsilon \exists \phi_{n}$ measurable such that $\int\left|f-\phi_{n}\right| d \mu<\frac{\varepsilon}{100}$. Suppose $\phi_{n}=\sum_{j=1}^{N} a_{j} \chi_{A_{j}}$. Since A_{j} is measurable we know $\exists \sigma_{j}$ open such that $\mu\left(\sigma_{j} \backslash A_{j}\right) \leq \frac{\varepsilon}{10^{10^{10}}}$ and $\sigma_{j} \supset A_{j}$. Then $\widetilde{\phi_{n}}=\sum a_{j} \chi_{\sigma_{j}} . \int\left|\phi_{n}-\widetilde{\phi_{n}}\right|$ is very small. In \mathbb{R} every open set is the union of open intervals. So:

$$
\sigma_{j}=\bigcup_{k} I_{j, k} \quad \text { (for } I_{j, k} \text { open interval) }
$$

Since $\mu\left(\sigma_{j}\right)<\infty \Longrightarrow \mu\left(I_{j}, k\right) \xrightarrow[k \rightarrow \infty]{0}$. Define $\widetilde{\sigma_{j}}=\bigcup_{k=1}^{M} I_{j, h}$ we can make $\mu\left(\sigma_{j} \backslash \widetilde{\sigma_{j}}\right)$ very small. Define $\widetilde{\sigma_{j}}=\sum a_{j} \chi_{a_{j}}$ (need to check $\left.\int\left|f-\widetilde{\widetilde{\sigma_{n}}} d \mu<\varepsilon\right|\right) . \int\left|f-\sigma_{n}+\sigma_{n}-\widetilde{\sigma_{n}}+\widetilde{\sigma_{n}}-\widetilde{\sigma_{n}}\right| d \mu$ (then use triangle inequality). $\exists g$ continuous such that $\int\left|\chi_{[a, b]}-g\right| d \mu<\varepsilon$.

Theorem 12. Let $(X, \mathcal{M}, \mu), f: X \times[a, b] \rightarrow \mathbb{R}$ (or $\mathbb{C}), x \in X, t \in[a, b]$. Assume $f(x, t)$ is integrable w.r.t. $x \forall t$. Define $F(t)=\int_{X} f(x, t) d \mu$.
a) Assume $\exists g \in L^{1}(X, \mathcal{M}, \mu), g \geq 0$ such that $|f(x, t)| \leq g(x)$ and $\lim _{t \rightarrow t_{0}} f(x, t)=f\left(x, t_{0}\right)$. Then:

$$
\lim _{t \rightarrow t_{0}} F(t)=F\left(t_{0}\right)
$$

b) Suppose $\frac{\partial f}{\partial t}(x, t)$ exists and $\exists h \in L^{1}$ such that $\left|\frac{\partial f}{\partial t}(x, t)\right| \leq h(x)$. Then:

$$
F^{\prime}(t)=\int_{X} \frac{\partial f}{\partial t}(x, t) d \mu
$$

Proof.
a) Define $f_{n}(x)=f\left(x, t_{n}\right)$ for some $\left\{t_{n}\right\}_{n=1}^{\infty}$ such that $t_{n} \rightarrow t_{0}$. Then we have a sequence $\left\{f_{n}\right\}_{n=1}^{\infty}$ on X such that $f_{n} \in L^{1}$. Moreover, $\left|f_{n}(x)\right| \leq g(x)$ so by DCT:

$$
\int_{X} \lim _{n \rightarrow \infty} f_{n} d \mu=\lim _{n \rightarrow \infty} \int_{X} f_{n} d \mu
$$

Which implies:

$$
F\left(t_{0}\right):=\int f\left(x, t_{0}\right) d \mu=\lim _{n \rightarrow \infty} \int f\left(x, t_{n}\right) d \mu=\lim _{n \rightarrow \infty} F\left(t_{n}\right)
$$

b) Define $\frac{\partial f}{\partial t}\left(x, t_{0}\right)=\lim _{n \rightarrow \infty} h_{n}(x)$ where:

$$
h_{n}(x)=\frac{f\left(x, t_{n}\right)-f\left(x, t_{0}\right)}{t_{n}-t_{0}}
$$

and $t_{n} \rightarrow t_{0} .\left|h_{n}(x)\right| \leq h(x)$, so apply DCT.

Theorem 13. Let $f:[a, b] \rightarrow \mathbb{R}$.
a) If f is Riemann integrable then it is Lebesgue integrable (and the two values are the same).
b) f is Riemann integrable iff $\{x: f(x)$ is discontinuous at $x\}$ has Lebesgue measure 0 .

3.4 Different modes of convergence

Let $\left\{f_{n}\right\}_{n=1}^{\infty}, f_{n}: X \rightarrow \mathbb{R}($ or $\mathbb{C})$

1. Uniform convergence:

$$
\forall \varepsilon>0 \exists N_{\varepsilon} \text { s.t. }\left|f_{n}(x)-f_{m}(x)\right|<\varepsilon \forall m, n \geq N \forall x
$$

2. Pointwise convergence:

$$
\forall x \forall \varepsilon>0 \exists N_{\varepsilon}(x) \text { s.t. }\left|f_{n}(x)-f_{m}(x)\right|<\varepsilon \forall n, m \geq N
$$

3. a.e. convergence:
(Pointwise convergence except on a set of measure 0)
4. L_{1} convergence:

$$
\forall \varepsilon>0 \exists N \text { s.t. } \int\left|f_{n}-f_{m}\right| d \mu<\varepsilon \forall n, m \geq N
$$

5. Convergence in measure:

$$
\forall \varepsilon>0 \mu\left(\left\{x \in X:\left|f_{n}(x)-f_{m}(x)\right|>\varepsilon\right\}\right) \rightarrow 0 \text { as } n, m \rightarrow \infty
$$

Proposition 26. $L^{1} \Longrightarrow$ measure.
Proof. We have:

$$
\int\left|f_{n}-f\right| d \mu \rightarrow 0
$$

(Want that $\forall \varepsilon>0, \mu\left(\left\{x:\left|f_{n}-f\right|>\varepsilon\right\}\right) \rightarrow 0$ as $\left.n \rightarrow \infty\right)$

$$
0 \leftarrow \int\left|f_{n}-f\right| d \mu \geq \int_{\left\{x:\left|f_{n}-f\right|>\varepsilon\right\}}\left|f_{n}-f\right| d \mu \geq \int_{\left\{x:\left|f_{n}-f\right|>\varepsilon\right\}} \varepsilon d \mu=\varepsilon \mu\left(\left\{x:\left|f_{n}-f\right|>\varepsilon\right\}\right)
$$

So $\mu\left(\left\{x:\left|f_{n}-f\right|>\varepsilon\right\}\right) \rightarrow 0$ as $n \rightarrow \infty$.
Proposition 27. Uniform \Longrightarrow measure
Proof. $\forall \varepsilon>0 \exists N$ s.t. $\left|f_{n}(x)-f(x)\right|<\varepsilon$ for $n \geq N \forall x$ (want $\left.\mu\left(\left\{x:\left|f_{n}(x)-f(x)\right|>\varepsilon\right\}\right) \rightarrow 0\right)$. For $n \geq N$, $\left\{x:\left|f_{n}(x)-f(x)\right|>\varepsilon\right\}=\varnothing$.

Example 10 (Showing pointwise \nRightarrow measure). Consider $f_{n}(x)=\chi_{[n, n+1]} . f_{n}(x)=0 \forall n>x+1$, so $f_{n} \rightarrow 0$ pointwise but $\mu\left(\left\{x:\left|f_{n}(x)-0\right|>\frac{1}{2}\right\}\right)=\mu([n, n+1])=1 \forall n$.

Example 11 (Showing uniform $\nRightarrow L^{1}$). Consider $f_{n}(x)=\frac{1}{n} \chi_{[0, n]} \cdot \sup _{x \in \mathbb{R}}\left|\frac{1}{n} \chi_{[0, n]}-0\right|=\frac{1}{n} \rightarrow 0$, therefore $f_{n} \rightrightarrows 0$ uniformly.

$$
\int\left|\frac{1}{n} \chi_{[0, n]}-0\right| d \mu=n \cdot \frac{1}{n}=1
$$

Example 12 (Showing $L^{1} \Longrightarrow$ a.e.). Construct a sequence as $f_{1}=\chi_{\left(0, \frac{1}{2}\right)}, f_{2}=\chi_{\left(\frac{1}{2}, \frac{1}{2}+\frac{1}{3}\right)}$, continuing in this fashion until the positive end of the interval is greater than 1, such as in $f_{3}=\chi_{\left(\frac{1}{2}+\frac{1}{3}, \frac{1}{2}+\frac{1}{3}+\frac{1}{4}\right)}=\chi_{\left(\frac{5}{6}, \frac{13}{12}\right)}$, so we define $f_{4}=\chi_{\left(0, \frac{1}{5}\right)}, f_{5}=\chi_{\left(\frac{1}{5}, \frac{1}{5}+\frac{1}{6}\right)}$, and so on. We have:

$$
\int\left|f_{n}-0\right| d \mu \leq \frac{1}{n+1} \rightarrow 0
$$

So $\left\{f_{n}\right\}_{n=1}^{\infty}$ converges to 0 in L^{1}, but it doesnt convergence to 0 a.e. Let $x \in(0,1)$. For every $n, f_{N}(x)=1$ for some $N>n$, so $f_{n}(x) \ngtr 0 \forall x \in(0,1)$.
Theorem 14. Let $\left\{f_{n}\right\}_{n=1}^{\infty} \subset L^{1}$. Assume f_{n} is Cauchy in measure. Then $\exists f$ such that f_{n} converges to f in measure. Furthermore, there is a subsequence $\left\{f_{n_{j}}\right\}_{n=1}^{\infty}$ such that $f_{n_{j}} \rightarrow f$ a.e. Moreover, if f_{n} converges in measure to g then $g=f$ a.e.
Proof. We know $\forall \varepsilon>0 \mu\left(\left\{x:\left|f_{n}(x)-f_{m}(x)\right|>\varepsilon\right\}\right) \rightarrow 0$ as $m, n \rightarrow \infty$. i.e. $\forall \varepsilon>0 \forall \delta>0 \quad \exists N$ s.t. $\mu(\{x$: $\left.\left.\left|f_{n}(x)-f_{m}(x)\right|>\varepsilon\right\}\right)<\delta \forall m, n>N$. Choose $\varepsilon=\frac{1}{2^{j}}, \delta=\frac{1}{2^{j}}$. Then $\exists N_{j}$ s.t. $\mu\left(\left\{x:\left|f_{n}(x)-f_{m}(x)\right|>\frac{1}{2^{j}}\right\}\right)<\frac{1}{2^{j}}$ for all $m, n \geq N_{j}$. Define $g_{j}:=f_{N_{j}}$ (want to show $g_{j}(x)$ converges to something). So:

$$
\mu \underbrace{\left(\left\{x:\left|g_{j}(x)-g_{j+1}(x)\right|>\frac{1}{2^{j}}\right\}\right)}_{E_{j}}<\frac{1}{2^{j}}
$$

Define:

$$
F_{k}=\bigcup_{j=k}^{\infty} E_{j}
$$

F_{k} points where we shouldn't hope for convergence.

$$
\mu\left(F_{k}\right) \leq \sum_{j=k}^{\infty} \mu\left(E_{j}\right) \leq \sum_{j=k}^{\infty} \frac{1}{2^{j}}=\frac{2}{2^{k}}
$$

What happens outside F_{k} ? Take $x \notin F_{k}$, look at $\left|g_{j}(x)-g_{i}(x)\right|$. w.l.o.g. assume $j \geq i$:

$$
\begin{aligned}
\left|g_{j}(x)-g_{i}(x)\right| & =\left|g_{j}(x)-g_{j-1}(x)+g_{j+1}(x)-\ldots+g_{i+1}(x)-g_{i}(x)\right| \\
& \leq \sum_{l=i}^{j-1}\left|g_{l+1}(x)-g_{l}(x)\right|
\end{aligned}
$$

Remember $x \notin F_{k}$ so take $i, j \geq k$, then:

$$
\left|g_{j}(x)-g_{i}(x)\right| \leq \sum_{l=i}^{j-1} \frac{1}{2^{l}} \leq \sum_{l=i}^{\infty} \frac{1}{2^{l}}=\frac{2}{2^{i}} \leq \frac{2}{2^{k}}
$$

This means $\left\{g_{j}(x)\right\}_{j=1}^{\infty}$ is a Cauchy sequence in \mathbb{R}. Define $f(x)$ to be the limit of $g_{n}(x)$ as $n \rightarrow \infty$ for $x \notin F_{k}$. We have now defined $f(x)$ for $x \in F_{k}^{c}$ for every k. So we have $f(x)$ for $x \in \cup_{k=1}^{\infty}\left(F_{k}^{c}\right)$. We now need only define f for $x \in\left(\cup_{k=1}^{\infty}\left(F_{k}^{c}\right)\right)^{c}$, but $\left(\cup_{k=1}^{\infty}\left(F_{k}^{c}\right)\right)^{c}=\bigcap_{k=1}^{\infty} F_{k}$. Notice that:

$$
\mu\left(\bigcap_{k=1}^{\infty} F_{k}\right) \leq \mu\left(F_{k}\right) \leq \frac{2}{2^{k}} \Longrightarrow \mu\left(\bigcap_{k=1}^{\infty} F_{k}\right)=0
$$

So define f to be anything you like in $\bigcap_{k=1}^{\infty} F_{k}$. Thus we have shown that there is a subsequence $\left\{f_{n_{j}}\right\}_{j=1}^{\infty}$ such that $f_{n_{j}} \rightarrow f$ a.e. Next, want to show $f_{n} \rightarrow f$ in measure. We know $\left|g_{j}(x)-g_{i}(x)\right| \leq \frac{2}{2^{i}}$ for $x \notin F_{k}$, $j \geq i \geq k$. Taking limits as $j \rightarrow \infty$ (they exist by above):

$$
\begin{aligned}
\lim _{j \rightarrow \infty}\left|g_{j}(x)-g_{i}(x)\right| \leq \frac{2}{2^{i}} & \left(\text { for } x \notin F_{k}, i \geq k\right) \\
\left|f(x)-g_{i}(x)\right| \leq \frac{2}{2^{i}} & \left(\text { for } x \notin F_{n}, i \geq k\right)
\end{aligned}
$$

We know $\mu\left(\left\{x:\left|g_{j}(x)-f(x)\right| \geq \frac{2}{2^{j}}\right\}\right) \leq \mu\left(F_{k}\right)$. Given $\varepsilon>0$ choose j such that $\frac{2}{2^{j}}<\varepsilon$:

$$
\mu\left(\left\{x:\left|g_{j}(x)-f(x)\right|>\varepsilon\right\}\right) \leq \mu\left(\left\{x:\left|g_{j}(x)-f(x)\right|>\frac{2}{2^{j}}\right\}\right) \leq \mu\left(F_{k}\right)
$$

Letting $j=k$ gives:

$$
\mu\left(\left\{x:\left|g_{j}(x)-f(x)\right|>\varepsilon\right\}\right) \leq \mu\left(F_{j}\right) \leq \frac{2}{2^{j}} \rightarrow 0
$$

So far we've only shown g_{i} converges to f in measure, not that f_{n} converges to f in measure. So:

$$
\begin{aligned}
\left\{x:\left|f_{n}(x)-f(x)\right|>\varepsilon\right\} & =\left\{x:\left|f_{n}(x)-g_{i}(x)+g_{i}(x)-f(x)\right|>\varepsilon\right\} \\
& \subset\left(\left\{x:\left|f_{n}(x)-g_{i}(x)\right|>\frac{\varepsilon}{2}\right\} \cup\left\{x:\left|g_{i}(x)-f(x)\right|>\frac{\varepsilon}{2}\right\}\right) \\
\Longrightarrow \mu\left(\left\{x:\left|f(x)_{n}-f(x)\right|>\varepsilon\right\}\right) \leq & \underbrace{\mu\left(\left\{x:\left|f_{n}(x)-f_{N_{i}}(x)\right|>\frac{\varepsilon}{2}\right\}\right)}_{\begin{array}{c}
\text { Theorem hypothesis that } \\
f_{n} \text { Cauchy in measure }
\end{array}}+\underbrace{\mu\left(\left\{x:\left|f_{N_{i}}(x)-f(x)\right|>\frac{\varepsilon}{2}\right\}\right)}_{\rightarrow 0 \text { as } i \rightarrow \infty \text { as shown }}
\end{aligned}
$$

Finally, uniqueness, let there be two, f and g, then:

$$
\begin{array}{ll}
\mu\left(\left\{x:\left|f_{n}(x)-f(x)\right|>\varepsilon\right\}\right) \rightarrow 0 & \\
\mu\left(\left\{x:\left|g_{n}(x)-g(x)\right|>\varepsilon\right\}\right) \rightarrow 0 & \\
(\text { as } n \rightarrow \infty) \\
\text { as } n \rightarrow \infty)
\end{array}
$$

But:

$$
\begin{aligned}
\{x:|f-g|>\varepsilon\} & =\left\{x:\left|f-f_{n}+f_{n}-g\right|>\varepsilon\right\} \\
& \subseteq\left(\left\{x:\left|f-f_{n}\right|>\frac{\varepsilon}{2}\right\} \cup\left\{x:\left|f_{n}-g\right|>\frac{\varepsilon}{2}\right\}\right) \\
\Longrightarrow \quad \mu(\{x:|f-g|>\varepsilon\}) & \leq \mu\left(\left\{x:\left|f-f_{n}\right|>\frac{\varepsilon}{2}\right\}\right)+\mu\left(\left\{x:\left|f_{n}-g\right|>\frac{\varepsilon}{2}\right\}\right) \\
\mathrm{LHS} & \leq \lim _{n \rightarrow \infty} \text { RHS }=0 \\
\Longrightarrow \quad \mu(\{x:|f-g|>\varepsilon\}) & =0
\end{aligned}
$$

So:

$$
\begin{gathered}
\{x: f \neq g\}=\bigcup_{n=1}^{\infty}\left\{x:|f-g|>\frac{1}{2^{n}}\right\} \\
\mu(\{x: f \neq g\}) \leq \sum_{n=1}^{\infty} \mu\left(\left\{x:|f-g|>\frac{1}{2^{n}}\right\}\right)=\sum_{n=1}^{\infty} 0=0 \Longrightarrow f=g \text { a.e. }
\end{gathered}
$$

Corollary 4. If $\left\{f_{n}\right\}_{n=1}^{\infty} \subset L^{1}$ is Cauchy in L^{1}, then there is a subsequence $f_{n_{j}} \rightarrow f$ a.e.
Theorem 15 (Egorov). Let $f: X \rightarrow \mathbb{R}, \mu(X)<\infty, f_{n}: X \rightarrow \mathbb{R}$ and $f_{n} \rightarrow f$ a.e. Then $\forall \varepsilon>0$ there is a set E with $\mu(E)<\varepsilon$ such that $f_{n} \rightrightarrows f$ on E^{c}.

Proof. w.l.o.g. $f_{n} \rightarrow f \forall x$ (add to E the set where you don't converge). Define:

$$
E_{n}(k)=\bigcup_{m=n}^{\infty}\left\{x:\left|f_{m}(x)-f(x)\right|>\frac{1}{k}\right\}
$$

Notice $E_{n}(k) \supseteq E_{n+1}(k)$ with k fixed:

$$
\lim _{n \rightarrow \infty} E_{n}(k)=\bigcap_{n=1}^{\infty} E_{n}(k)=\varnothing
$$

and:

$$
\mu\left(E_{1}(k)\right) \leq \mu(X)<\infty
$$

So:

$$
\underbrace{\mu\left(\bigcap_{n=1}^{\infty} E_{n}(k)\right)}_{=\mu(\varnothing)=0}=\lim _{n \rightarrow \infty} \mu\left(E_{n}(k)\right)
$$

So $\forall k$, given $\varepsilon>0 \exists n(k)$ (i.e. n depending on k) such that $\mu\left(E_{n(k)}(k)\right)<\frac{\varepsilon}{2^{k}}$. Define:

$$
E=\bigcup_{k=1}^{\infty} E_{n(k)}(k)
$$

Then:

$$
\mu(E) \leq \sum_{k=1}^{\infty} \mu\left(E_{n(k)}(k)\right)<\sum_{k=1}^{\infty} \frac{\varepsilon}{2^{k}}=\varepsilon
$$

(Need to show $f_{n} \rightrightarrows f$ on E^{c})

$$
E^{c}=\bigcap_{k=1}^{\infty}\left(E_{n(k)}(k)\right)^{c}
$$

So:

$$
x \in E^{c} \Longrightarrow x \in\left(E_{n(k)}(k)\right)^{c}
$$

But:

$$
\begin{aligned}
\left(E_{n(k)}(k)\right)^{c} & =\bigcap_{m=n(k)}^{\infty}\left(\left\{x:\left|f_{m}(x)-f(x)\right|>\frac{1}{k}\right\}^{c}\right) \\
& =\bigcap_{m=n(k)}^{\infty}\left\{x:\left|f_{m}(x)-f(x)\right| \leq \frac{1}{k}\right\}
\end{aligned}
$$

So:

$$
x \in E^{c} \Longrightarrow\left|f_{m}(x)-f(x)\right| \leq \frac{1}{k}
$$

($\forall k$, for m large enough)
Which implies uniform convergence.

3.5 Product measures

Reminder of the product σ-algebra: take $(X, \mathcal{M}, \mu),(Y, \mathcal{N}, \nu)$. We defined the product σ-algebra in terms of:

$$
\left\{\prod_{\alpha}^{-1}\left(E_{\alpha}\right): E_{\alpha} \in \mathcal{M}_{\alpha}\right\}
$$

We denoted this as $\otimes \mathcal{M}$. When you have a finite (or countable) product, that is the same as the one generated by:

$$
\left\{\prod E_{\alpha}: E_{\alpha} \in \mathcal{M}_{\alpha}\right\}
$$

Definition 25. A rectangle is any set of the form $A \times B$ for $A \in \mathcal{M}, B \in \mathcal{N}$.
Observations:

- $(A \times B) \cap(E \times F)$ is a rectangle as $(A \times B) \cap(E \times F)=(A \cap E) \times(B \cap F)$.
- $(A \times B)^{c}=\left(X \times B^{c}\right) \cup\left(A^{c} \times B\right)$

Claim. The collection of finite disjoint unions of rectangles is an algebra.
Consider the rectangle $A \times B$. Assume $A \times B$ can be written as $\cup_{i=1}^{\infty} A_{i} \times B_{i}$ with $A_{i} \times B_{i}$ rectangles. So:

$$
\chi_{A}(x) \chi_{B}(y)=\chi_{A \times B}(x, y)=\sum_{i=1}^{\infty} \chi_{A_{i} \times B_{i}}(x, y)=\sum_{i=1}^{\infty} \chi_{A_{i}}(x) \chi_{B_{i}}(y)
$$

Then:

$$
\int \chi_{A}(x) \chi_{B}(y) d \mu=\int \chi_{A \times B}(x, y) d \mu=\int \sum_{i=1}^{\infty} \chi_{A_{i}}(x) \chi_{B_{i}}(y) d \mu \underbrace{=}_{\mathrm{By} \mathrm{MCT}} \sum_{i=1}^{\infty} \int \chi_{A_{i}}(x) \chi_{B_{i}}(y) d \mu=\sum_{i=1}^{\infty} \mu\left(A_{i}\right) \chi_{B_{i}}(y)
$$

Now, we integrate with respect to y :

$$
\mu(A) \nu(B)=\int \mu(A) \chi_{B}(y) d \nu=\iint \chi_{A \times B}(x, y) d \mu d \nu \underbrace{=}_{\mathrm{MCT}} \sum_{i=1}^{\infty} \mu\left(A_{i}\right) \nu\left(B_{i}\right)
$$

If we could define a measure π on $(X \times Y, \mathcal{M} \otimes \mathcal{N})$, we would expect:

$$
\pi(A \times B)=\iint_{X \times Y} \chi_{A \times B} d \pi
$$

We find $\pi(A \times B)$ should be $\mu(A) \nu(B)$ or $\sum_{i=1}^{\infty} \mu\left(A_{i}\right) \nu\left(B_{i}\right)$. Thus:

$$
\pi(A \times B)=\mu(A) \nu(B)=\sum_{i=1}^{\infty} \mu\left(A_{i}\right) \nu\left(B_{i}\right)=\sum_{i=1}^{\infty} \pi\left(A_{i} \times B_{i}\right)
$$

Construction: define $\pi(A \times B):=\mu(A) \nu(B)$ as it has the property $\pi\left(\cup_{i=1}^{\infty}\left(A_{i} \times B_{i}\right)\right)=\sum_{i=1}^{\infty} \pi\left(A_{i} \times B_{i}\right)$. Now we want to define an outer measure. Given any set $W \in \mathcal{M} \otimes \mathcal{N}$, define:

$$
\pi^{*}(W)=\inf \left\{\sum_{i=1}^{\infty} \pi\left(F_{i} \times G_{i}\right): W \subset \bigcup_{i=1}^{\infty}\left(F_{i} \times G_{i}\right), F_{i} \in \mathcal{M}, G_{i} \in \mathcal{N}\right\}
$$

Definition 26. A set A is measurable if:

$$
\pi^{*}(E)=\pi^{*}(E \cap A)+\pi^{*}\left(E \cap A^{c}\right)
$$

Applying Caratheodory's theorem we get that the set of measurable sets is a σ-algebra (in fact it is the same as $\mathcal{M} \otimes \mathcal{N})$.

Main point: π is an extension of $\pi(A \times B)=\mu(A) \nu(B)$ when $A \times B$ is a rectangle.
Note:

- If μ and ν are σ-finite then $\infty \cdot 0=0$.
- Else we cannot say anything.

Example 13. Consider $\mathbb{R} \times\{1\}$.

$$
\pi(\mathbb{R} \times\{1\})=\mu(\mathbb{R}) \nu(\{1\})=\infty \cdot 0
$$

But:

$$
\mathbb{R} \times\{1\}=\bigcup_{n=1}^{\infty}([-n, n] \times\{1\})
$$

So:

$$
\pi(\mathbb{R} \times\{1\})=\pi\left(\bigcup_{n=1}^{\infty}([-n, n] \times\{1\})\right) \underbrace{=}_{\text {continuity }} \lim _{n \rightarrow \infty} \pi([-n, n] \times\{1\})=\lim _{n \rightarrow \infty} 0=0
$$

Let $E \subset X \times Y$.

$$
\begin{aligned}
& E_{x}=\{y \in Y:(x, y) \in E\} \\
& E^{y}=\{x \in X:(x, y) \in E\}
\end{aligned}
$$

$f: X \times Y \rightarrow \mathbb{R}($ or $\mathbb{C})$.

- $f_{x}(y)$ fixes x, function on y.
- $f^{y}(x)$ fixes y, function on x.

Proposition 28.

a) Let $E \subset X \times Y, E \in \mathcal{M} \otimes \mathcal{N}$. Then E_{x} is measurable w.r.t. ν and E^{y} is measurable w.r.t. μ.
b) Let $f: X \times Y \rightarrow \mathbb{R}$ (or \mathbb{C}) be a map that is $\mathcal{M} \otimes \mathcal{N}$ measurable. Then $f_{x}(y)$ is measurable w.r.t. \mathcal{N} and $f_{y}(x)$ is measurable w.r.t. \mathcal{M}.

Proof.
a) Remember, $\mathcal{M} \otimes \mathcal{N}$ is σ-algebra generated by $A \times B$ s.t. $A \in \mathcal{M}$ and $B \in \mathcal{N}$. So it is smallest σ-algebra containing all $A \times B$.

$$
\left\{E: E \subset X \times Y \text { and } E_{x} \text { is measurable w.r.t. } \nu\right\} \supset \mathcal{M} \otimes \mathcal{N}
$$

Want to show two things for this set:
i) It contains all rectangles $A \times B$:
$E=A \times B$ rectangle. Then:

$$
E_{x}= \begin{cases}B & \text { if } x \in A \\ \varnothing & \text { if } x \notin A\end{cases}
$$

ii) It's a σ-algebra:

We need to show that it is closed under countable unions and closure under complements. Let $\left\{E_{i}\right\}_{i=1}^{\infty} \subset R$

$$
\left(\bigcup_{i=1}^{\infty} E_{i}\right)_{x}=\bigcup_{i=1}^{\infty}\left(E_{i_{x}}\right) \in \mathcal{N}
$$

\bullet

$$
\left(E^{c}\right)_{x}=\left(E_{x}\right)^{c} \in \mathcal{N}
$$

b) Need f_{x} measurable w.r.t. \mathcal{N}, need:

$$
\left(f_{x}\right)^{-1}(\sigma) \in \mathcal{N}
$$

We know:

$$
f^{-1}(\sigma) \in \mathcal{M} \otimes \mathcal{N}
$$

Claim. $\left(f^{-1}(\sigma)\right)_{x}=\left(f_{x}\right)^{-1}(\sigma)$

Theorem 16. Let $(X, \mathcal{M}, \mu),(Y, \mathcal{N}, \nu)$ be σ-finite measurable spaces. For $E \in \mathcal{M} \otimes \mathcal{N}$ we define:

$$
\begin{aligned}
x & \mapsto \nu\left(E_{x}\right) \\
y & \mapsto \mu\left(E^{y}\right)
\end{aligned}
$$

The the two functions are measurable (w.r.t. appropriate measure), and:

$$
\mu \times \nu(E)=\int \nu\left(E_{x}\right) d \mu=\int \mu\left(E^{y}\right) d \nu
$$

So:

$$
\begin{aligned}
\mu \times \nu(E) & =\iint_{X \times Y} \chi_{E}(x, y) d \mu \times \nu \\
& =\int_{X}\left(\int_{Y} \chi_{E}(x, y) d \nu\right) d \mu=\int_{Y}\left(\int_{X} \chi_{E}(x, y) d \mu\right) d \nu \quad \text { (was true before) }
\end{aligned}
$$

Theorem 17 (Fubini-Tonelli). Let $(X, \mathcal{M}, \mu),(Y, \mathcal{N}, \nu)$ be σ-finite measure spaces.
a) (Tonelli) Let f be a non-negative measurable function in $X \times Y$. Define:

$$
\begin{aligned}
& g(x):=\int f_{x} d \nu \\
& h(y):=\int f^{y} d \mu
\end{aligned}
$$

Then g and h are measurable functions (w.r.t. appropriate σ-algebra). Moreover:

$$
\int f d \mu \times \nu=\int g d \mu=\int h d \nu
$$

b) (Fubini) Let $f \in L^{1}(\mu \times \nu)$ (i.e. $\left.\int|f| d \mu \times \nu<\infty\right)$. Then:

$$
\begin{array}{ll}
f_{x} \in L^{1}(\nu) & \text { (for almost every } x \in X) \\
f_{y} \in L^{1}(\mu) & \text { (for almost every } y \in Y)
\end{array}
$$

Then if:

$$
\begin{aligned}
& g(x):=\int f_{x} d \nu \\
& h(y):=\int f^{y} d \mu
\end{aligned}
$$

We have $g \in L^{1}(\mu)$ and $h \in L^{1}(\nu)$. Moreover:

$$
\int f d \mu \times \nu=\int g d \mu=\int h d \nu
$$

Note that part a) (Tonelli) does not require $\int f d \mu \times \nu<\infty$. In practical terms, given $f: X \times Y \rightarrow \mathbb{R}$. We look at $|f|: X \times Y \rightarrow[0, \infty)$, then $|f|$ satisfied all assumptions of Tonelli's theorem. This will tell us if $f \in L^{1}$, if it is then we can apply Fubini (if not then we know nothing...).

Proof.
a) Claims:
i) The preceding theorem is a special case of Fubini-Tonelli, when $f(x, y)=\chi_{E}(x, y)$
ii) By linearity Fubini-Tonelli is true for linear combinations of indicator functions.
iii) We can finish proof using fact that we can approximate measurable functions with an increasing sequence of linear combinations of characteristic functions.
iii) Given $f \geq 0$, we construct a sequence of simple functions $\left\{\phi_{n}\right\}_{j=1}^{\infty}$, i.e. each a linear combination of characteristic functions:

$$
0 \leq \phi_{1} \leq \phi_{2} \leq \ldots \leq f
$$

And:

$$
\int \phi_{n} d \mu \times \nu=\int\left(\int\left(\phi_{n}\right)_{x} d \nu\right) d \mu=\int\left(\int\left(\phi_{n}\right)^{y} d \mu\right) d \nu
$$

Now:

$$
g_{n}(x):=\int\left(\phi_{n}\right)_{x}(y) d \nu
$$

g_{n} is monotone increasing as $\phi_{k} \leq \phi_{k+1}$:

$$
\lim _{n \rightarrow \infty} g_{n}(x)=\lim _{n \rightarrow \infty} \int\left(\phi_{n}\right)_{x} d \nu=\int \lim _{n \rightarrow \infty} \phi_{n}(x, y) d \nu=g(x)
$$

So:

$$
\begin{aligned}
\int g d \mu & =\int \lim _{n \rightarrow \infty} g_{n} d \mu \\
& =\lim _{n \rightarrow \infty} \int g_{n} d \mu \\
& =\lim _{n \rightarrow \infty}\left(\int\left(\int\left(\phi_{n}\right)_{x}(y) d \nu\right) d \mu\right) \\
& =\lim _{n \rightarrow \infty}\left(\int\left(\int \phi_{n}(x, y) d \mu\right) d \nu\right) \\
& =\int\left(\lim _{n \rightarrow \infty} \int \phi_{n}(x, y) d \mu\right) d \nu \\
& =\int\left(\int f(x, y) d \mu\right) d \nu
\end{aligned}
$$

b) We are assuming $\int|f| d \mu \times \nu<\infty$, which implies $\int f^{+} d \mu \times \nu<\infty$ and $\int f^{-} d \mu \times \nu<\infty$, with:

$$
\int f d \mu \times \nu=\int f^{+} d \mu \times \nu-\int f^{-} d \mu \times \nu
$$

Apply part a) to each of the two integrals and then recombine.

Example 14.

$$
\begin{aligned}
& \int\left(\int f(x, y) d x\right) d y=1 \\
& \int\left(\int f(x, y) d y\right) d x=0
\end{aligned}
$$

The reason they differ is that:

$$
\iint|f(x, y)| d x d y=\infty
$$

Example 15. Let:

- $\mu(A)=\#$ of points in A
- $X=[0,1]=Y$
- $\mathcal{M}=\mathcal{P}(X)$
- $\mu=$ counting measure
- $\mathcal{N}=$ Lebesgue
- $\nu=$ Lebesgue measure
- $D=\{(x, x): x \in[0,1]\}$

Consider:

$$
\iint \chi_{D}(x, y) d \mu \times \nu
$$

We have:

$$
\begin{aligned}
& \int\left(\int \chi_{D}(x, y) d \mu\right) d \nu=\int_{[0,1]} 1 d \nu=1 \\
& \int\left(\int \chi_{D}(x, y) d \nu\right) d \mu=\int_{[0,1]} 0 d \mu=0
\end{aligned}
$$

Claim.

$$
\iint \chi_{D}(x, y) d \mu \times \nu=\mu \times \nu(D)=\infty
$$

4 Signed Measures

Let (X, \mathcal{M}) be a measurable space. Then we say ν is a signed measure if it satisfies $\nu: \mathcal{M} \rightarrow[-\infty, \infty]$ with:

1. $\nu(\varnothing)=0$
2. ν takes at most one of $\pm \infty$.
3. $\left\{E_{j}\right\}_{j=1}^{\infty}$, with $E_{j} \in \mathcal{M}$ pairwise disjoint then:

$$
\nu\left(\biguplus_{n=1}^{\infty} E_{n}\right)=\sum_{n=1}^{\infty} \nu\left(E_{n}\right)
$$

with the series converging absolutely for $\sum_{n=1}^{\infty} \nu\left(E_{n}\right)<\infty$.

Example 16.

1. Take two measures on the same measurable space (X, \mathcal{M}). Say μ_{1}, μ_{2} with $\mu_{1}(X), \mu_{2}(X)<\infty$. Define:

$$
\nu(A):=\mu_{1}(A)-\mu_{2}(A)
$$

2. Take μ a (positive) measure. $f: X \rightarrow[-\infty, \infty]$ measurable with $\int|f| d \mu<\infty$. Define:

$$
\nu(E):=\int_{E} f d \mu
$$

We know that if μ is a positive measure and $f \geq 0$ then the map $A \mapsto \int_{A} f d \mu$ is a measure. Write:

$$
\nu(E)=\int_{E} f d \mu=\int_{E} f^{+} d \mu-\int_{E} f^{-} d \mu
$$

Proposition 29. Let ν be a signed measure on ($X \mathcal{M}$).
i) If $\left\{E_{j}\right\} \subset \mathcal{M}, E_{j} \subset E_{j+1}$, then:

$$
\nu\left(\bigcup_{j=1}^{\infty} E_{j}\right)=\lim _{j \rightarrow \infty} \nu\left(E_{j}\right)
$$

ii) If $\left\{f_{j}\right\} \subset \mathcal{M}, F_{j} \supset F_{j+1}$ and $\left|\nu\left(F_{1}\right)\right|<\infty$, then:

$$
\nu\left(\bigcap_{j=1}^{\infty} F_{j}\right)=\lim _{j \rightarrow \infty} \nu\left(F_{j}\right)
$$

Definition 27. Let (X, \mathcal{M}), and let ν be a signed measure.

1. We say $E \in \mathcal{M}$ is a positive set iff $\nu(F) \geq 0 \forall F \in \mathcal{M}$ with $F \subset E$.
2. We say $E \in \mathcal{M}$ is a negative set iff $\nu(F) \leq 0 \forall F \in \mathcal{M}$ with $F \subset E$.
3. We say $E \in \mathcal{M}$ is null if E is positive and negative.

Example 17. $\nu(E)=\int_{E} f d \mu$ for some $f \in L^{1}, \mu$ positive measure. Take $f(x)=x, E \subset[-1,1], \mu$ Lebesgue.

$$
\begin{aligned}
\nu(E) & =\int_{E} x d x \\
\nu([-1,1]) & =\int_{-1}^{1} x d x=0
\end{aligned}
$$

But:

$$
\begin{gathered}
{[0,1] \subset[-1,1] \text { and } \nu([0,1])=\frac{1}{2}} \\
{[-1,0] \subset[-1,1] \text { and } \nu([-1,0])=-\frac{1}{2}}
\end{gathered}
$$

So E is neither positive or negative.

Lemma 3.

1. Any subset (that is measurable) of a positive set is positive.
2. Any subset (that is measurable) of a negative set is negative.

Theorem 18 (Hahn decomposition theorem). Let ν be a signed measure on (X, \mathcal{M})-measurable space. Then $\exists P \in \mathcal{M}$, a positive set and $N \in \mathcal{M}$, a negative set such that $X=P \cup N$. If P^{\prime}, N^{\prime} are another such pair, then $P \triangle P^{\prime}$ and $N \triangle N^{\prime}$ are null.

Notation: $P \triangle P^{\prime}$ is the symmetric difference.

$$
P \triangle P^{\prime}=\left(P \cup P^{\prime}\right) \backslash\left(P \cap P^{\prime}\right)=\left(P \backslash P^{\prime}\right) \cup\left(P^{\prime} \backslash P\right)
$$

Proof. w.l.o.g. ν does not attain $+\infty$. Define:

$$
M=\sup _{E \in \mathcal{M}} \underbrace{\{\nu(E): E \text { positive }\}}_{\text {not empty as it contains } \varnothing}
$$

Which implies $\exists\left\{P_{j}\right\}_{j=1}^{\infty} \subset \mathcal{M}$ such that P_{j} positive and $\nu\left(P_{j}\right) \not \subset \mathcal{M}$.
Claim. $P:=\bigcup_{j=1}^{\infty} P_{j}$ is positive and $N:=X \backslash P$ is negative.
Let $E \subset P$, then:

$$
E=E \cap P=E \cap\left(\bigcup_{j=1}^{\infty} P_{j}\right)=\bigcup_{j=1}^{\infty}\left(E \cap P_{j}\right)
$$

(and $\left.\nu\left(E \cap P_{j}\right) \geq 0 \forall j\right)$

So P is positive.
Observe that N does not contain any positive sets of positive measure. Otherwise, take $E \subset N$ with $\nu(E)>0$. Then $\nu(P \cup E)=\nu(P)+\nu(E)>M$.

To show N is negative, go by contradiction. Assume N is not negative, i.e $\exists A \subset N$ such that $\nu(A)>0$. Then, as A cannot be positive, $\exists C \subset A$ such that $\nu(C)<0$. So take $B=A \backslash C$, then as:

$$
\nu(A)=\nu(C)+\nu(A \backslash C)
$$

We have $\nu(B)>\nu(A)$. We now construct a sequence $\left\{A_{j}\right\}_{j=1}^{\infty} \subset N$ and sequence $\left\{n_{j}\right\}_{j=1}^{\infty} \subset \mathbb{N}$. Let n_{1} be the smallest natural number such that $\exists B \subset N$ with $\nu(B)>\frac{1}{n_{1}}$. Choose A_{1} to be one such set B. Let n_{j} be the smallest natural number such that $\exists B \subset A_{j-1}$ with $\nu(B)>\nu\left(A_{j-1}\right)+\frac{1}{n_{j}}$. Choose A_{j} to be one such set B. Define $A=\bigcap_{j=1}^{\infty} A_{j}$, then $\nu(A)=\lim _{j \rightarrow \infty} \nu\left(A_{j}\right) \geq \sum_{j=1}^{\infty} \frac{1}{n_{j}} \Longrightarrow n_{j} \rightarrow \infty$ as $j \rightarrow \infty$ (as ν does not attain $+\infty$). So $\nu(A)>0$ but $\exists B$ such that $\nu(B)>\nu(A)+\frac{1}{n_{*}}$ for some n_{*}. Notice, as $n_{j} \rightarrow \infty$, at some point $n_{j}>n_{*}$.
Once $n_{j}>n_{*}$ we have a contradiction as n_{j} is, by definition, the smallest natural number such that $\exists B$ with:

$$
\nu(B)>\nu\left(A_{j-1}\right)+\frac{1}{n}
$$

So N is negative.
Finally, need to show uniqueness of decomposition (i.e. if P^{\prime}, N^{\prime} is another such pair then $P \triangle P^{\prime}$ and $N \triangle N^{\prime}$ are null; we will do this by showing they are both positive and negative).
Need $P \backslash P^{\prime}$ and $P^{\prime} \backslash P$ to be both positive and negative.

$$
\begin{aligned}
P \backslash P^{\prime} \subset P & \Longrightarrow \text { positive } \\
P^{\prime} \backslash P \subset P^{\prime} & \Longrightarrow \text { positive } \\
P \backslash P^{\prime} \subset N^{\prime} & \Longrightarrow \text { negative } \\
P^{\prime} \backslash P \subset N & \Longrightarrow \text { negative }
\end{aligned}
$$

Notation: any decomposition $X=P \cup N$ with P positive and N negative is called a Hahn decomposition.
Definition 28. Let μ and ν be two signed measures on a non-empty measurable space (X, \mathcal{M}). We say μ is mutually singular w.r.t. ν if $\exists F, E \in \mathcal{M}$ such that:

$$
X=F \cup E, E \cap F=\varnothing
$$

with E null for μ and F null for ν.
Theorem 19 (Jordan decomposition). Given a signed measure ν on (X, \mathcal{M}), there exists two unique positive measures μ^{+}, μ^{-}that are mutually singular and satisfy:

$$
\nu=\mu^{+}-\mu^{-}
$$

Proof.

$$
\begin{aligned}
& \mu^{+}(E)=\nu(E \cap P) \\
& \mu^{-}(E)=-\nu(E \cap N)
\end{aligned}
$$

where P, N are Hahn decompositions of X, which implies μ^{+}and μ^{-}are positive.

$$
\nu(E)=\nu(E \cap(P \cup N))=\nu(E \cap P)+\nu(E \cap N)=\mu^{+}(E)-\mu^{-}(E)
$$

μ^{+}and μ^{-}are mutually singular as $X=P \uplus N$. Let $E \subset N$. Then:

$$
\mu^{+}(E)=\nu(\underbrace{E \cap P}_{\varnothing})=0
$$

For uniqueness let:

$$
\begin{aligned}
\nu & =\mu^{+}-\mu^{-} \\
\nu & =\nu^{+}-\nu^{-}
\end{aligned}
$$

with $\nu^{+} \neq \mu^{+}$and $\nu^{-} \neq \mu^{-}$. The measures ν^{+}and ν^{-}must then generate another Hahn decomposition as ν^{+} and ν^{-}are mutually singular. Therefore $\exists E, F$ such that $X=E \cup F, E \cap F=\varnothing$ with E null for ν^{-}, F null for ν^{+}. Now:

$$
\begin{align*}
\mu^{+}(A)=\mu^{+}(A \cap P)=\nu(A \cap P)= & \nu(A \cap E) \underbrace{=\nu^{+}(A)=\nu^{+}(A \cap(E \cup F))=\nu^{+}(A \cap E)+\nu^{+}(A \cap F)}_{\nu(A \cap E)=\nu^{+}(A \cap E)-\nu^{-}(A \cap E)})
\end{align*}
$$

Also, $\nu(A \cap P)=\nu(A \cap E)$ as:

$$
\begin{aligned}
\nu(A \cap P) & =\nu(A \cap P \cap(E \cup F)) & & \\
& =\nu(A \cap P \cap E)+\nu(A \cap P \cap F) & & \text { (as } A \cap P \cap F \subset P \text { positive) } \\
\nu(A \cap E) & =\nu(A \cap E \cap(P \cup N)) & & \\
& =\nu(A \cap P \cap E)+\nu(A \cap E \cap N) & & \text { (as } A \cap P \cap F \subset F \text { negative) }
\end{aligned}
$$

Observation: (X, \mathcal{M}, ν) with ν signed.

- In the Hahn decomposition, P, N are not necessarily unique.
- Jordan decomposition, ν^{+}, ν^{-}are unique.

Definition 29. $|\nu|:=\nu^{+}+\nu^{-}$is the total variation.
$\mu \perp \nu$ whenever μ and ν mutually singular.

Exercise (highly examinable):

$$
\nu \perp \mu \Longleftrightarrow|\nu| \perp \mu \Longleftrightarrow \nu^{+} \perp \mu \text { and } \nu^{-} \perp \mu
$$

Recall:

$$
\nu(E):=\int_{E} f d \mu \quad \text { (for } f \in L^{1}, \mu \text { positive) }
$$

Proposition 30. Given a signed measure ν, we have:

$$
\nu(E)=\int_{E} f d \mu
$$

Where $f=\chi_{P}-\chi_{N}$ for P, N from Hahn decomposition, and $\mu=|\nu|$.
Proof.

$$
\begin{aligned}
\int_{E} f d \mu & =\int_{E} \chi_{P}-\chi_{N} d \mu \\
& =\int\left(\chi_{P}-\chi_{N}\right) \chi_{E} d|\nu| \\
& =\int \chi_{P \cap E}-\chi_{N \cap E} d\left(\nu^{+}+\nu^{-}\right) \\
& =\nu^{+}(P \cap E)-\nu^{+}(N \cap E)+\nu^{-}(P \cap E)-\nu^{-}(N \cap E) \\
& =\nu^{+}(P \cap E)-\nu^{-}(N \cap E) \\
& =\nu^{+}(E)-\nu^{-}(E) \\
& =\nu(E)
\end{aligned}
$$

How to integrate w.r.t. signed measures?

$$
\begin{array}{rlr}
\nu & =\nu^{+}-\nu^{-} & \text {(unique by Jordan) } \\
\int f d \nu & :=\int f d \nu^{+}-\int f d \nu^{-} & \text {(whenever this is not } \infty-\infty \text {) }
\end{array}
$$

Definition 30. Let $f: I \rightarrow \mathbb{R}, f$ is absolutely continuous if $\forall \varepsilon>0 \exists \delta$ such that whenever a finite sequence of pairwise disjoint subintervals $\left(a_{k}, b_{k}\right) \subset I$ satisfies $\sum_{k}\left|b_{k}-a_{k}\right|<\delta$, we have $\sum_{k}\left|f\left(b_{k}\right)-f\left(a_{k}\right)\right|<\varepsilon$.

Definition 31. μ-positive measure, ν-signed measure. ν is absolutely continuous w.r.t. μ if:

$$
\mu(E)=0 \Longrightarrow \nu(E)=0
$$

We write $\nu \ll \mu$
Exercises:
1.

$$
\nu \ll \mu \Longleftrightarrow \nu^{+} \ll \mu \text { and } \nu^{-} \ll \mu
$$

2.

$$
\nu \perp \mu \text { and } \nu \ll \mu \Longrightarrow \nu(A)=0
$$

Theorem 20. ν-signed measure, μ-positive measure. Then $\nu \ll \mu$ iff $\forall \varepsilon>0 \exists \delta$ such that $\mu(E)<\delta \Longrightarrow$ $|\nu(E)|<\varepsilon$.

As an application, take $f \in L^{1}, \mu$ any positive measure. Define:

$$
\nu(E):=\int_{E} f d \mu
$$

Then $\forall \varepsilon>0 \exists \delta>0$ such that $\mu(E)<\delta \Longrightarrow|\nu(E)|<\varepsilon$. This is because $\nu \ll \mu$ as:

$$
\mu(E)=0 \Longrightarrow \nu(E)=\int_{E} f d \mu=0
$$

(Notation: whenever $\nu(E)=\int_{E} f d \mu$, we write $d \nu=f d \mu$)

$$
F(x)=\int_{a}^{x} f(y) d y
$$

"Claim" $F^{\prime}(x)=f$ for "nice" f :

$$
\frac{F(x+h)-F(x)}{h}=\frac{1}{h} \int_{x}^{x+h} f(y) d y
$$

Let $\nu(E)=\int_{E} f d x$, then $\int_{a}^{x} f(y) d y=\nu([a, x])$

$$
\frac{1}{h} \int_{[x, x+h]} f(y) d y=\frac{1}{h} \nu([x, x+h])=\frac{\nu([x, x+h])}{\mu([x, x+h])}
$$

Theorem 21 (Lebesgue-Radon-Nikodym). (X, \mathcal{M}) non-empty measurable space. Let ν be a σ-finite signed measure and μ be a σ-finite positive measure. Then $\exists!\lambda, \varphi \sigma$-finite signed measures such that:

$$
\lambda \perp \mu, \varphi \ll \mu, v=\lambda+\varphi
$$

Moreover, there is an integrable function $f: X \rightarrow \mathbb{R}$ such that $d \varphi=f d \mu\left(\right.$ i.e. $\left.\varphi(E)=\int_{E} f d \mu\right)$. Any two such functions are equal a.e. w.r.t. μ.
i.e. for ν, μ given, unique way to write:

$$
\begin{aligned}
\nu(E) & =\lambda(E)+\varphi(E) \\
& =\lambda(E)+\int_{E} f d \mu
\end{aligned}
$$

with $\lambda \perp \mu$ and $\varphi \ll \mu$.
In general, given ν, μ it is not possible to write:

$$
\nu(E)=\int_{E} f d \mu
$$

for some f. When we can't do this we can't compute is larger $\frac{d \nu}{d \mu}$.
Proposition 31. $\nu \sigma$-finite signed $\mu, \lambda \sigma$-finite positive. Assume $\nu \ll \lambda$ and $\mu \ll \lambda$. Then:

$$
\int h d \nu=\int h \frac{d \nu}{d \mu}
$$

Also:

$$
\frac{d \nu}{d \lambda}=\frac{d \nu}{d \mu} \frac{d \mu}{d \lambda}
$$

5 Crash Course on L^{p} Spaces

Let (X, \mathcal{M}, μ).

$$
\mathcal{L}^{p}=\left\{f: X \rightarrow \mathbb{C}: \int|f|^{p} d \mu<\infty\right\}
$$

If $p=1$ then $\|f\|:=\int|f| d \mu$ is a norm on \mathcal{L}^{1}. If $p>1$ then natural idea for norm is:

$$
\|f\|_{p}=\left(\int|f|^{p} d \mu\right)^{\frac{1}{p}}
$$

Again, doesn't work yet.
Define \sim (equivalence class) such that $f \sim g$ iff $f=g$ a.e. Define

$$
L^{p}=\mathcal{L}^{p} / \sim
$$

To show $\|f\|_{p}$ is a norm on L^{p} need:
i) $\|f\|_{p} \geq 0$ and $\|f\|_{p} \Longleftrightarrow f \equiv 0$ (in L^{p}).
ii) $\|\lambda f\|_{p}=|\lambda|\|f\|_{p}$ (trivial).
iii) $\|f+g\| \leq\|f\|_{p}+\|g\|_{p}$

Proposition 32.

$$
f \in L^{p}, g \in L^{p} \Longrightarrow f+g \in L^{p}
$$

Proof.

$$
|f(x)+g(x)|^{p} \leq(2 \max \{|f(x)|,|g(x)|\})^{p} \leq 2^{p}\left(|f(x)|^{p}+|g(x)|^{p}\right)
$$

Therefore:

$$
\int|f+g|^{p} d \mu \leq 2^{p} \int|f|^{p} d \mu+2^{p} \int|g|^{p} d \mu<\infty
$$

Lemma 4. Let $a \geq 0, b \geq 0,0<\lambda<1$. Then:

$$
a^{\lambda} b^{1-\lambda} \leq \lambda a+(1-\lambda) b
$$

With equality iff $a=b$.
Proof. This is trivial if $b=0$, so assume $b \neq 0$, then:

$$
a^{\lambda} b^{-\lambda} \leq \lambda\left(\frac{a}{b}\right)+1-\lambda
$$

So want, for $t \geq 0, t^{\lambda} \leq \lambda t+1-\lambda$. Let $f(t) \leq 1-\lambda$. Calculating max using differentiation gives $t=1$ as max
Theorem 22 (Hölder's inequality).

$$
\int|f \cdot g| d \mu \leq\|f\|_{p}\|g\|_{q} \quad \quad\left(\text { provided } \frac{1}{p}+\frac{1}{q}=1\right)
$$

Proof. Trivial if $\|f\|_{p}=0$ or ∞, or $\|g\|_{q}=0$ or ∞, so assume they are not. This it is equivalent to show:

$$
\int \frac{|f|}{\|f\|_{p}} \cdot \frac{|g|}{\|g\|_{q}} d \mu \leq 1
$$

So enough to show:

$$
\int|f \cdot g| d \mu \leq 1 \quad\left(\text { whenever }\|f\|_{p}=\|g\|_{q}=1\right)
$$

By using the above lemma with $a=|f(x)|^{p}, b=|g(x)|^{q}, \lambda=\frac{1}{p}$, we get:

$$
|f| \cdot|g| \leq \frac{1}{p}|f|^{p}+\frac{1}{q}|g|^{q}
$$

Therefore:

$$
\int|f \cdot g| d \mu \leq \int \frac{1}{p}|f|^{p} d \mu+\int \frac{1}{q}|g|^{q} d \mu=\frac{1}{p}+\frac{1}{q}
$$

Theorem 23 (Minkowski's inequality).

$$
\|f+g\|_{p} \leq\|f\|_{p}+\|g\|_{p}
$$

Proof. (Using Hölder's inequality)
This is trivial for $p=1$ (just triangle inequality for real numbers), so let $p>1$:

$$
\int|f+g|^{p} d \mu=\int\left|f+g\left\|f+\left.g\right|^{p-1} d \mu \leq \int(|f|+|g|)|f+g|^{p-1} d \mu \leq \int\left|f \left\|f+\left.g\right|^{p-1} d \mu+\int|g \| f+g|^{p-1} d \mu\right.\right.\right.\right.
$$

Now $\frac{1}{p}+\frac{1}{q}=1 \Longrightarrow \frac{1}{q}=\frac{p-1}{p}$, so:

$$
\begin{aligned}
\int|f+g|^{p} d \mu & \leq\|f\|_{p}\left(\int\left(|f+g|^{p-1}\right)^{q} d \mu\right)^{\frac{1}{q}}+\|g\|_{p}\left(\int\left(|f+g|^{p-1}\right)^{q} d \mu\right)^{\frac{1}{q}} \\
& =\left(\|f\|_{p}+\|g\|_{p}\right)\left(\int|f+g|^{p} d \mu\right)^{\frac{1}{q}}
\end{aligned}
$$

This gives us:

$$
\left(\int|f+g|^{p} d \mu\right)^{1-\frac{1}{q}} \leq\|f\|_{p}+\|g\|_{p}
$$

i.e.

$$
\left(\int|f+g|^{p} d \mu\right)^{\frac{1}{p}} \leq\|f\|_{p}+\|g\|_{p}
$$

