Surname			Other	Names				
Centre Number					Candida	ate Number		
Candidate Signature								

For Examiner's Use

General Certificate of Education January 2009 Advanced Subsidiary Examination ASSESSMENT and QUALIFICATIONS
ALLIANCE

CHEMISTRY CHM3/W Unit 3(a) Introduction to Organic Chemistry

Friday 9 January 2009 1.30 pm to 2.30 pm

For this paper you must have

· a calculator.

Time allowed: 1 hour

Instructions

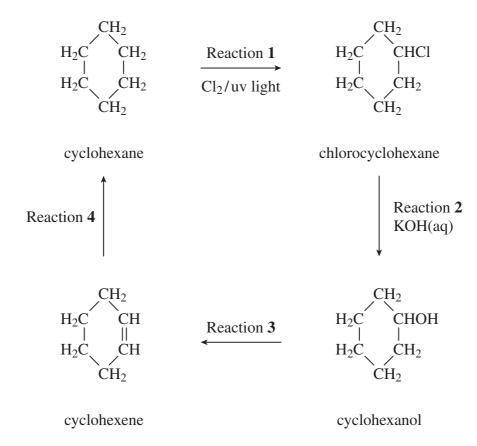
- Use black ink or black ball-point pen.
- Fill in the boxes at the top of this page.
- Answer all questions.
- Answer the questions in Section A and Section B in the spaces provided. Answers written in margins or on blank pages will not be marked.
- Your answers to the parts of **Section B** should be on the pages indicated.
- Show all your working.
- Do all rough work in this book. Cross through any work you do not want to be marked.
- The Periodic Table/Data Sheet is provided as an insert.

Information

- The maximum mark for this paper is 60.
- The marks for questions are shown in brackets.
- You are expected to use a calculator where appropriate.
- Write your answer to the question in **Section B** in continuous prose, where appropriate. You will be assessed on your ability to use good English, to organise information clearly and to use specialist vocabulary where appropriate.

Advice

• You are advised to spend about 45 minutes on **Section A** and about 15 minutes on **Section B**.


For Examiner's Use					
Question	Mark	Question	Mark		
1					
2					
3					
4					
5					
6					
Total (Co	lumn 1)	\rightarrow			
Total (Co	Total (Column 2) —>				
TOTAL					
Examine	r's Initials				

SECTION A

Answer all questions in the spaces provided.

1 Consider the following reaction scheme.

1	(a)	The mechanism of Reaction 1 is similar to that of the reaction between chlorine and methane. Name the type of mechanism in Reaction 1.
		(1 mark
1	(b)	Name the type of mechanism in Reaction 2.

.....(1 mark)

1 (c) Identify a catalyst for Reaction 3.

(1 mark)

1	(d)	Cycl	Cyclohexanol can be oxidised by reaction with acidified potassium dichromate(VI).				
1	(d)	(i)	State the class of alcohols to which cyclohexanol belongs.				
1	(d)	(ii)	Identify the functional group formed when cyclohexanol is oxidised under these conditions.				
			(1 mark)				
1	(e)	Cycl	ohexene is an unsaturated hydrocarbon.				
1	(e)	(i)	State what is meant by the term <i>unsaturated</i> as applied to a hydrocarbon.				
			(1 mark)				
1	(e)	(ii)	Identify a reagent and a catalyst which can be used for Reaction 4.				
			Reagent				
			Catalyst(2 marks)				

Turn over for the next question

2 Consider the following reaction between methylpropene and hydrogen bromide.

$$\begin{array}{c} \text{CH}_3 \\ \mid \\ \text{CH}_3 - \text{C} = \text{CH}_2 + \text{HBr} \end{array} \longrightarrow \begin{array}{c} \text{CH}_3 \\ \mid \\ \text{CH}_3 - \text{C} - \text{CH}_3 \\ \mid \\ \text{methylpropene} \end{array}$$

2 (a) Name the product of this reaction.

(1 mark)

2 (b) Name and outline a mechanism for this reaction between methylpropene and hydrogen bromide.

Name of mechanism

Mechanism

(5 marks)

- **2** (c) When methylpropene reacts with hydrogen bromide another organic compound is formed as a minor product.
- **2** (c) (i) Draw the structure of this minor product.

(1 mark)

2 (c) (ii) Use your knowledge of the mechanism to explain why only a relatively small amount of this minor product is formed.

.....

(2 marks)

2 (d) Methylpropene reacts to form a tertiary alcohol in a two-stage process.

Stage 1 CH_3 CH_3

Stage 2
$$CH_3$$
 CH_3 CH_3

2 (d) (i) State the overall role of the sulphuric acid in this two-stage process.

(1 mark)

 ${f 2}$ (d) (ii) Stage ${f 2}$ of this process uses water as a reagent. Name the type of reaction in Stage ${f 2}$.

(1 mark)

(d) (iii) Name the alcohol formed by this process.

(1 mark)

(1 ma.

.....

(1 mark)

Turn over

3	In aqueous solut	ion, some glucose	molecules (C ₆ H ₁	$_{2}O_{6}$) have the	structure shown	below.
•	III aqueous solut	ion, some gracose	11101000100 (00)11	/O()/ Have the	bulactare bire wir	CCIC III.

3	(a)	Give the empirical formula of glucose and name the two diff	erent types of functi	ional
		group in this form of glucose.		

- 3 (b) An aqueous solution of glucose can be converted into ethanol and carbon dioxide.
- **3** (b) (i) Name this process.

	(1 mark)

(b) (ii) Write an equation for this process.

	(1 mark)

3 (b) (iii) Give **two** disadvantages of this process when it is used to make ethanol on a large scale. Do **not** include the cost of the process in your answer.

Disadvantage I	[
8				
•••••	• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •

Disadvantage 2	
----------------	--

(2 marks)

3 (b) (iv) Write an equation for the complete combustion of ethanol.

.....(1 mark)

4	Ammonia reacts with	1-bromobutane a	ccording to the	following equation.
---	---------------------	-----------------	-----------------	---------------------

$$CH_3CH_2CH_2CH_2Br + 2NH_3 \longrightarrow CH_3CH_2CH_2CH_2NH_2 + NH_4Br$$

$$\mathbf{Q}$$

4 (a) Name and outline a mechanism for the reaction of ammonia with 1-bromobutane.

Name o	f mechanism	 	 	
	•			

Mechanism

(5 marks)

4 (b) Name compound \mathbf{Q} and draw the structure of a position isomer of \mathbf{Q} .

Name of $oldsymbol{Q}$

Structure of position isomer of Q

(2 marks)

7

5	But-	-2–en	e is formed from 2–bromobutane. The eq	quation for this reaction is shown below.
		CH ₃ C	$H_2CHBrCH_3 + NaOH \longrightarrow CH$	3CH=CHCH ₃ + H ₂ O + NaBr
5	(a)	Nam	e and outline a mechanism for this reacti	on.
		Nam	e of mechanism	
		Мес	hanism	
				(4 marks)
5	(b)	But-	2–ene exists as two stereoisomers.	
5	(b)	(i)	State what is meant by the term <i>stereois</i>	omers.
				(2 marks)
5	(b)	(ii)	Name the type of stereoisomerism show	n by but–2–ene.
				(1 mark)
5	(b)	(iii)	Draw the structures of the two stereoiso stereoisomers.	mers of but–2–ene. Name these
			Stereoisomer 1	Stereoisomer 2
			Name	Name(2 marks)

SECTION B

Answer the question below in the spaces provided on pages 10 to 12 of this booklet. You should answer each part of the question on the separate pages as shown. Each part of the question is reprinted at the top of the page.

6 Crude oil is a mixture of hydrocarbons from which several fractions, including gasoline and naphtha, can be separated.

Gasoline is used as a fuel in petrol-engined cars and this use can result in the formation of atmospheric pollutants.

Naphtha is thermally cracked to produce mainly alkenes.

6 (a) Give the name of the process used to separate the fractions gasoline and naphtha from crude oil. Outline the essential features of this process and explain why it leads to separation of the fractions.

(5 marks)

6 (b) The gaseous pollutants carbon monoxide and nitrogen monoxide are formed in small amounts during the combustion of nonane (C_9H_{20}) in a petrol-engined car.

Write equations for the reactions which produce these **two** pollutants.

Explain why these reactions occur in a petrol engine.

Write an equation for the reaction that occurs in a catalytic converter which removes **both** of these gaseous pollutants from the exhaust gases of a petrol-engined car.

(5 marks)

6 (c) Give **one** essential condition for the thermal cracking of naphtha and name the type of reactive intermediate involved.

Write an equation to show how one molecule of the alkane $C_{14}H_{30}$ can be converted into one molecule of ethene, two molecules of propene and one molecule of an alkane.

State **one** reason why the production of alkenes is such an important industrial process. (5 marks)

END OF QUESTIONS

6 (a) Give the name of the process used to separate the fractions gasoline and naphtha from crude oil. Outline the essential features of this process and explain why it leads to separation of the fractions. (5 marks)
Write your answer to Question 6(a) on this page.

6 (b)	The gaseous pollutants carbon monoxide and nitrogen monoxide are formed in small amounts during the combustion of nonane (C_9H_{20}) in a petrol-engined car. Write the equations for the reactions which produce these two pollutants.
	Explain why these reactions occur in a petrol engine.
	Write an equation for the reaction that occurs in a catalytic converter which removes both of these gaseous pollutants from the exhaust gases of a petrol-engined car. (5 marks)
	Write your answer to Question 6(b) on this page.
•••••	

6 (c)	Give one essential condition for the thermal cracking of naphtha and name the type of reactive intermediate involved.
	Write an equation to show how one molecule of the alkane $C_{14}H_{30}$ can be converted into one molecule of ethene, two molecules of propene and one molecule of an alkane.
	State one reason why the production of alkenes is such an important industrial process. (5 marks)
	Write your answer to Question 6(c) on this page.
Copyright © 20	09 AQA and its licensors. All rights reserved.

CHEMISTRY CHM3/W Unit 3(a) Introduction to Organic Chemistry

Gas constant $R = 8.31 \text{ J K}^{-1} \text{ mol}^{-1}$

Table 1 Proton n.m.r. chemical shift data

Type of proton	δ/ppm
RCH_3	0.7–1.2
R_2CH_2	1.2–1.4
R_3 CH	1.4–1.6
$RCOCH_3$	2.1–2.6
$ROCH_3$	3.1–3.9
$RCOOCH_3$	3.7–4.1
ROH	0.5-5.0

Table 2 Infra-red absorption data

Bond	Wavenumber/cm ⁻¹
С—Н	2850–3300
C—C	750–1100
C=C	1620–1680
C=O	1680–1750
С—О	1000-1300
O—H (alcohols)	3230–3550
O—H (acids)	2500–3000

The Periodic Table of the Elements

■ The atomic numbers and approximate relative atomic masses shown in the table are for use in the examination unless stated otherwise in an individual question.

0	4.0 He Helium 2	20.2 Ne	Neon 10	39.9 Ar	Argon 18	83.8 K	Krypton 36	131.3 Xe	Xenon 54	222.0 Rn	Radon 86		
=		ூட	luorine	تن	hlorine	_ල ක්	romine	6.9 —	lodine	210.0 At	Astatine 85		
5		16.0 O	Carbon Nitrogen Oxygen F	32.1 S	Sulphur 16	79.0 Se	Selenium 34	127.6 Te	Tellurium 52	210.0 Po	Polonium 84		
>		0.41 Z	Nitrogen 7	31.0 P	Phosphorus 15	74.9 As	Arsenic 33	121.8 Sb	Antimony 51	209.0 Bi	Bismuth 83		
≥		12.0 C	Carbon 6	28.1 Si	Silicon 14	72.6 Ge	Germanium 32	118.7 Sn	Tin 50	207.2 Pb	Lead 82		
=		10.8 B	Boron 5	27.0 Al	Aluminium 13	69.7 Ga	Gallium 31	114.8 n	Indium 49	204.4 T	Thallium 81		
						65.4 Zn	Zinc 30	112.4 Cd	Cadmium 48	200.6 Hg			
						63.5 Cu	Copper 29			197.0 Au	Gold 79		
						58.7 Ni	Nickel 28	106.4 Pd	Palladium 46	195.1 P	Platinum 78		
						္မင္ပ	Cobalt 7	102.9 Rh	Rhodium 45	192.2 r	Iridium 77		
						55.8 Fe	Iron 26	101.1 Bu	Ruthenium 44	190.2 Os	Osmium 76		
		6.9 L	Lithium 3			54.9 Mn	Manganese Iron 25	98.9 Tc	Technetium 43	186.2 Re	Rhenium 75		
		ass				52.0 Ç	Vanadium Chromium Manganese 23 24 25	95.9 Mo	Molybdenum 42	183.9 W	Tungsten 74		
		relative atomic mass -	umber –			50.9 V	Vanadium 23	95.9 Nb	Niobium 41	180.9 Ta	Tantalum 73		
	Key	relative a	atomic number			47.9 Ti	Titanium 22	91.2 Zr	_	178.5 H	Hafnium 72		
						45.0 Sc	Scandium 21	8 8.9	Yttrium 39	138.9 La	بد⊒	227 AC	Actinium 89 †
=		9.0 Be	Beryllium 4	24.3 Mg	Magnesium 12	40.1 Ca	Calcium 20	87.6 Sr	Strontium 38				Radium 88
-	1.0 H Hydrogen 1			l .		39.1 X	Potassium 19	85.5 Rb	_	132.9 Cs	Caesium 55		Francium 87
9/CHM3	/W			_			_		_			_	_

-	140.1 Oe	40.1 140.9 144.2 144. Ce Pr Nd	144.2 Nd	9.1 P	150.4 Sm	150.4 152.0 1	157.3 158.9 Gd Tb	158.9 Tb	162.5 Dy	164.9 Ho	167.3 Er			175.0 Lu
. 38 – /1 Lantnanides	Cerium F	raseodymium 59	Neodymium 60	Ę	Samarium 62	n Europium 63	Gadolinium 64	m Terbium 65	Dysprosium 66	Dysprosium Holmium 67	Erbium 38	Thulium 69	Ytterbium 70	Lutetium 71
	232.0 Th	232.0 231.0 238.0 237.0 Th Pa U N	238.0 U	۵		_	247.1 Cm		252.1 Cf	(252) Es	(257) Fm	(258) Md		(260) Lr
T 90 - 103 Actinides	Thorium P	Protactinium Uranium 91	Uranium 92	nium	Plutoniur 94	Americium 95	Curium 96	Berkelium 97	Californium 98	Einsteinium 99	Fermium 100	Mendelevi 101	Nobelium 102	Lawrencium 103