GCE
 AS and A Level

Physics A

AS exams 2009 onwards
A2 exams 2010 onwards

Unit 4A: Approved specimen question paper

Version 1.3

General Certificate of Education 2010

Advanced Examination

PHYSICS A

PHYA4/1
Unit 4: Fields and Further Mechanics

Section A

SPECIMEN PAPER

For this paper you must have:

- an objective test answer sheet
- black ball-point pen
- a calculator
- a question paper/answer book for Section B (enclosed)

Instructions

- Use a black ball-point pen. Do not use pencil.
- Answer all questions in this section.
- For each question there are four responses. When you have selected the response which you think is the most appropriate answer to a question, mark this response on your answer sheet.
- Mark all responses as instructed on your answer sheet. If you wish to change your answer to a question, follow the instructions on your answer sheet.
- Do all rough work in this book not on the answer sheet.

Information

- The maximum mark for this paper is 25 .
- All questions in Section A carry equal marks. No deductions will be made for incorrect answers.
- A Data and Formulae Booklet is provided as a loose insert.
- The question paper/answer book for Section B is enclosed within this question paper.

1 For the two physical quantities, impulse and force, which one of the following is correct?
A Impulse is a scalar and force is a scalar.
B Impulse is a scalar and force is a vector.
C Impulse is a vector and force is a scalar.
D impulse is a vector and force is a vector.
2 A particle of mass m strikes a rigid wall perpendicularly from the left with velocity v.

If the collision is perfectly elastic, the change in momentum of the particle which occurs as a result of the collision is

A $2 m v$ to the right.
B $\quad 2 m v$ to the left.
C $m v$ to the left.
D zero.
3

A force, F, varies with time, t, as shown by the graph and is applied to a body initially at rest on a smooth surface. What is the momentum of the body after 5.0 s ?

A zero.
B $\quad 12.5 \mathrm{~N} \mathrm{~s}$.
C $\quad 25 \mathrm{Ns}$.
D $\quad 50 \mathrm{Ns}$.

4 The rate of change of momentum of a body falling freely under gravity is equal to its
A weight.
B power.
C kinetic energy.
D potential energy.
5 What is the value of the angular velocity of a point on the surface of the Earth?
A $\quad 1.2 \times 10^{-5} \mathrm{rad} \mathrm{s}^{-1}$
B $\quad 7.3 \times 10^{-5} \mathrm{rad} \mathrm{s}^{-1}$
C $\quad 2.6 \times 10-1 \mathrm{rad} \mathrm{s}^{-1}$
D $\quad 4.6 \times 10^{2} \mathrm{rad} \mathrm{s}^{-1}$
6

A model car moves in a circular path of radius 0.8 m at an angular speed of $\frac{\pi}{2} \mathrm{rad} \mathrm{s}^{-1}$. What is its displacement from point $\mathrm{P}, 6 \mathrm{~s}$ after passing P ?

A zero
B $\quad 1.6 \mathrm{~m}$
C $\quad 0.4 \pi \mathrm{~m}$
D $\quad 1.6 \pi \mathrm{~m}$
$7 \quad$ A particle of mass m moves horizontally at constant speed v along the arc of a circle from P_{1} to P_{2} under the action of a force. What is the work done on the particle by the force during this displacement?

A zero
B $\frac{\pi m v^{2}}{2}$
C $\quad m v^{2} \sqrt{2}$
D $\quad 2 m v^{2}$
8 A body moves with simple harmonic motion of amplitude 0.50 m and period 4π seconds. What is the speed of the body when the displacement of the body from the equilibrium position is 0.30 m ?

A $\quad 0.10 \mathrm{~m} \mathrm{~s}^{-1}$
B $\quad 0.15 \mathrm{~m} \mathrm{~s}^{-1}$
C $\quad 0.20 \mathrm{~m} \mathrm{~s}^{-1}$
D $\quad 0.40 \mathrm{~m} \mathrm{~s}^{-1}$
9 The time period of a simple pendulum is doubled when the length of the pendulum is increased by 3.0 m . What is the original length of the pendulum?

A $\quad 1.0 \mathrm{~m}$
B $\quad 1.5 \mathrm{~m}$
C $\quad 3.0 \mathrm{~m}$
D $\quad 6.0 \mathrm{~m}$

10 Which one of the following statements is not true for a body vibrating in simple harmonic motion when damping is present?

A The damping force is always in the opposite direction to the velocity.
B The damping force is always in the opposite direction to the displacement.
C The presence of damping gradually reduces the maximum potential energy of the system.
D The presence of damping gradually reduces the maximum kinetic energy of the system.

11 The Earth has density ρ and radius R. The gravitational field strength at the surface is g. What is the gravitational field strength at the surface of a planet of density 2ρ and radius $2 R$?

A g
B $\quad 2 g$
C $\quad 4 g$
D $16 g$
12 Which one of the following graphs correctly shows the relationship between the gravitational force, F, between two masses and their separation, r ?

A

C

B

D

13 Near the surface of a planet the gravitational field strength is uniform and for two points, 10 m apart vertically, the gravitational potential difference is $3 \mathrm{~J} \mathrm{~kg}^{-1}$. How much work must be done in raising a mass of 4 kg vertically through 5 m ?

A 3 J
B $\quad 6 \mathrm{~J}$
C $\quad 12 \mathrm{~J}$
D $\quad 15 \mathrm{~J}$
14 Two isolated point charges are separated by 0.04 m and attract each other with a force of $20 \mu \mathrm{~N}$. If the distance between them is increased by 0.04 m , what is the new force of attraction?

A $\quad 5 \mu \mathrm{~N}$
B $\quad 10 \mu \mathrm{~N}$
C $\quad 20 \mu \mathrm{~N}$
D $\quad 40 \mu \mathrm{~N}$
15 Two protons, each of mass m and charge e, are a distance d apart. Which one of the following expressions correctly gives the ratio $\left(\frac{\text { electrostatic force }}{\text { gravitational force }}\right)$ for the forces acting between them?

A $\frac{4 \pi \varepsilon_{0} e^{2}}{G m^{2}}$
B $\frac{G e^{2}}{4 \pi \varepsilon_{0} m^{2}}$
C $\frac{e^{2} m^{2}}{4 \pi \varepsilon_{0} G}$
D $\frac{e^{2}}{4 \pi \varepsilon_{0} G m^{2}}$
16 An electron travelling at constant speed enters a uniform electric field at right angles to the field. While the electron is in the filed it accelerates in a direction which is

A in the same direction as the electric field
B in the opposite direction to the electric field
C in the same direction as the motion of the electron
D in the opposite direction to the motion of the electron

17 Which one of the following statements about electric potential and electric field strength is correct?

A electric potential is zero whenever the electric field strength is zero
B electric field strength is a scalar quantity
C electric potential is a vector quantity
D electric potential due to a point charge varies as $(1 / r)$ where r is the distance from the point charge

18 A $1000 \mu \mathrm{~F}$ capacitor and a $10 \mu \mathrm{~F}$ capacitor are charged so that the potential difference across each of them is the same. The charge stored in the $1000 \mu \mathrm{~F}$ capacitor is Q_{1} and the charge stored in the $10 \mu \mathrm{~F}$ capacitor is Q_{2}. What is the ratio $\frac{Q_{1}}{Q_{2}}$?

A 100
B 10
C 1
D $\quad \frac{1}{100}$
19 In experiments to pass a very high current through a gas, a bank of capacitors of total capacitance $50 \mu \mathrm{~F}$ is charged to 30 kV . If the bank of capacitors could be discharged completely in 5.0 ms , what would be the mean power delivered?

A	22 kW
B	110 kW
C	4.5 MW
D	9.0 MW

20 The graph shows how the charge stored by a capacitor varies with the potential difference across it as it is charged from a 6 V battery.

Which one of the following statements is not correct?
A The capacitance of the capacitor is $5.0 \mu \mathrm{~F}$.
B When the potential difference is 2 V the charge stored is $10 \mu \mathrm{C}$.
C When the potential difference is 2 V the energy stored is $10 \mu \mathrm{~J}$.
D When the potential difference is 6 V the energy stored is $180 \mu \mathrm{~J}$.

21 The magnetic flux, Φ, through a coil varies with time, t, as shown by the first graph. Which one of the following graphs, A to D , best represents how the magnitude, \in, of the induced emf varies in this same period of time?

22 Protons, each of mass m and charge e, follow a circular path when travelling perpendicular to a magnetic field of uniform flux density B. What is the time taken for one complete orbit?

A $\frac{2 \pi e B}{m}$
B $\frac{m}{2 \pi e B}$
C $\quad \frac{e B}{2 \pi m}$
D $\frac{2 \pi m}{e B}$

The diagram shows a square coil with its plane parallel to a uniform magnetic field. Which one of the following would induce an emf in the coil?

A movement of the coil slightly to the left
B movement of the coil slightly downwards
C rotation of the coil about an axis through XY
D rotation of the coil about an axis perpendicular to the plane of the coil through Z

24 The primary winding of a perfectly efficient transformer has 200 turns and the secondary has 1000 turns. When a sinusoidal pd of rms value 10 V is applied to the input, there is a primary current of rms value 0.10 A rms . Which line in the following table, \mathbf{A} to \mathbf{D}, gives correct rms output values obtainable from the secondary when the primary is supplied in this way?

	rms output emf/V	rms output current/A
A	50	0.10
B	50	0.02
C	10	0.10
D	10	0.02

25 Why, when transporting electricity on the National Grid, are high voltages and low currents used?

A The energy lost by radiation from electromagnetic waves is reduced.
B The electrons move more rapidly.
C The heat losses are reduced.
D The resistance of the power lines is reduced.

