

ASSESSMENT and QUALIFICATIONS ALLIANCE

Mark scheme June 2003

GCE

Physics A

Unit PA04

Copyright $^{\odot}$ 2003 AQA and its licensors. All rights reserved.

The Assessment and Qualifications Alliance (AQA) is a company limited by guarantee registered in England and Wales 3644723 and a registered charity number 1073334 Registered address: Addleshaw Booth & Co., Sovereign House, PO Box 8, Sovereign Street, Leeds LS1 1HQ Kathleen Tattersall: *Director General*

Section A

Key to Objective Test Questions

1-A; 2-B; 3-A; 4-B; 5-A; 6-B; 7-A; 8-A; 9-D; 10-C; 11-C; 12-D; 13-A; 14-C; 15-D.

Section B

1

(a) interference or superposition ✓ reflection from metal plate ✓ two waves of the same frequency/wavelength ✓ travelling in opposite directions (or forward/reflected waves) ✓ maxima where waves are in phase or interfere constructively ✓ minima where waves are out of phase/antiphase or interfere destructively ✓ nodes and antinodes or stationary waves identified ✓ max(4)
 (b)(i) (distance between minima = λ/2)

$$\left(\frac{\lambda}{2} = \frac{144}{9} \text{ gives}\right) \lambda = 32.0 \text{ mm} \checkmark$$

(b)(ii)
$$c = f\lambda$$
 and $c = 3 \times 10^8 \text{ (m s}^{-1}) \checkmark$

$$f = \frac{3 \times 10^8}{32 \times 10^{-3}} = 9.38 \times 10^9 \text{ Hz} \checkmark$$
(allow C.E. for value of λ from (i))
(3)
(7)

2

(a) period = 24 hours or equals period of Earth's rotation ✓ remains in fixed position relative to surface of Earth ✓ equatorial orbit ✓ same angular speed as Earth or equatorial surface ✓ max(2)

(b)(i)
$$\frac{GMm}{r^2} = m\omega^2 r \checkmark$$
$$T = \frac{2\pi}{\omega} \checkmark$$
$$r\left(=\frac{GMT^2}{4\pi^2}\right)^{1/3} = \left(\frac{6.67 \times 10^{-11} \times 6 \times 10^{24} \times (24 \times 3600)^2}{4\pi^2}\right)^{1/3} \checkmark$$
(gives $r = 42.3 \times 10^3$ km)

(b)(ii)
$$\Delta V = GM\left(\frac{1}{R} - \frac{1}{r}\right) \checkmark$$

 $= 6.67 \times 10^{-11} \times 6 \times 10^{24} \times \left(\frac{1}{6.4 \times 10^6} - \frac{1}{4.23 \times 10^7}\right) = 5.31 \times 10^7 \text{ (J kg}^{-1}) \checkmark$
 $\Delta E_p = m\Delta V (= 750 \times 5.31 \times 10^7) = 3.98 \times 10^{10} \text{ J} \checkmark$
(allow C.E. for value of ΔV)

[alternatives:

calculation of $\frac{GM}{R}$ (6.25 × 10⁷) or $\frac{GM}{r}$ (9.46 × 10⁶) \checkmark or calculation of $\frac{GMm}{R}$ (4.69 × 10¹⁰) or $\frac{GMm}{r}$ (7.10× 10⁹) calculation of both potential energy values \checkmark subtraction of values or use of $m\Delta V$ with correct answer \checkmark] (6)

(8)

3

(a)	units: F - newton (N), B - tesla (T) or weber metre ^{-2} (Wb m ^{-2}),	
	I - ampere (A), l - metre (m) \checkmark	
	condition: I must be perpendicular to $B \checkmark$	(2)

(b)(i) mass of bar,
$$m = (25 \times 10^{-3})^2 \times 8900 \times l \checkmark (= 5.56l)$$

weight of bar $(= mg) = 54.6l \checkmark$
 $mg = BIl$ or weight = magnetic force \checkmark
 $54.6l = B \times 65 \times l$ gives $B = 0.840$ T ✓

(b)(ii) arrow in correct direction (at right angles to *I*, in plane of bar) \checkmark (5) (7)

4

(a)	mass difference increases	
	or B.E. (per nucleon) or stability is greater for nucleus after fusion	\checkmark
	(greater) mass difference	
	or increase in B.E. (per nucleon) implies energy released \checkmark	
	both nuclei charged positively or have like charges \checkmark	
	electrostatic repulsion \checkmark	$_{\max}(3)$
$(\mathbf{b})(\mathbf{i})$	$\Lambda_m (-2 \times (2.01255)) = (2.01403 \pm 1.00867))$	
	$\Delta m \left(-2 \times (2.01555) - (5.01455 + 1.00807)\right)$	

b)(i)
$$\Delta m (= 2 \times (2.01355) - (3.01493 + 1.00867))$$

= 3.5×10^{-3} u \checkmark (5.81 × 10⁻³⁰ kg)

(b)(ii)
$$\Delta E = 3.5 \times 10^{-3} \times 931.3 \text{ (MeV)} \checkmark (= 3.26 \text{ MeV})$$

= $3.26 \times 10^{6} \times 1.6 \times 10^{-19} = 5.22 \times 10^{-13} \text{ (J)} \checkmark (3)$

<u>(6)</u>

Quality of Written Communication (Q1(a) and Q4(a)) \checkmark (2)