## PHYSICS (SPECIFICATION A)

## PA04

## Unit 4 Waves, Fields and Nuclear Energy

## Section A

Monday 26 January 2004 Morning Session
In addition to this paper you will require:

- an objective test answer sheet;
- a black ball-point pen;
- a calculator;
- a question paper/answer book for Section B (enclosed).

Time allowed: The total time for Section A and Section B of this paper is 1 hour 30 minutes

## Instructions

- Use a black ball-point pen. Do not use pencil.
- Answer all questions in this section.
- For each question there are four responses. When you have selected the response which you think is the most appropriate answer to a question, mark this response on your answer sheet.
- Mark all responses as instructed on your answer sheet. If you wish to change your answer to a question, follow the instructions on your answer sheet.
- Do all rough work in this book not on the answer sheet.


## Information

- The maximum mark for this section is 30 .
- Section A and Section B of this paper together carry $15 \%$ of the total marks for Physics Advanced.
- All questions in Section A carry equal marks. No deductions will be made for incorrect answers.
- A Data Sheet is provided on pages 3 and 4. You may wish to detach this perforated sheet at the start of the examination.
- The question paper/answer book for Section B is enclosed within this question paper.


## Data Sheet

- A perforated Data Sheet is provided as pages 3 and 4 of this question paper.
- This sheet may be useful for answering some of the questions in the examination.
- You may wish to detach this sheet before you begin work.




## SECTION A

In this section each item consists of a question or an incomplete statement followed by four suggested answers or completions.

You are to select the most appropriate answer in each case.
You are advised to spend approximately $\mathbf{3 0}$ minutes on this section.

1 A body moves in simple harmonic motion of amplitude 0.90 m and period 8.9 s . What is the speed of the body when its displacement is 0.70 m ?

A $\quad 0.11 \mathrm{~m} \mathrm{~s}^{-1}$
B $\quad 0.22 \mathrm{~m} \mathrm{~s}^{-1}$
C $\quad 0.40 \mathrm{~m} \mathrm{~s}^{-1}$
D $\quad 0.80 \mathrm{~m} \mathrm{~s}^{-1}$

2 To find a value for the acceleration of free fall, $g$, a student measured the time of oscillation, $T$, of a simple pendulum whose length, $l$, is changed. The student used the results to plot a graph of $T^{2}(y$ axis ) against $l(x$ axis $)$ and found the slope of the line to be $S$. It follows that $g$ is

A $\quad \frac{4 \pi^{2}}{S}$.

B $\quad 4 \pi^{2} S$.

C $\quad \frac{2 \pi}{S}$.

D $\quad 2 \pi S$.

3 The top graph is a displacement/time graph for a particle executing simple harmonic motion. Which one of the other graphs shows correctly how the kinetic energy, $E_{\mathrm{k}}$, of the particle varies with time?
displacement

4 In a Young's double slit interference experiment, monochromatic light placed behind a single slit illuminates two narrow slits and the interference pattern is observed on a screen placed some distance away from the slits. Which one of the following decreases the separation of the fringes?

A increasing the width of the single slit
B decreasing the separation of the double slits
C increasing the distance between the double slits and the screen
D using monochromatic light of higher frequency

5 Light of wavelength $\lambda$ is incident normally on a diffraction grating of slit separation $4 \lambda$. What is the angle between the second order maximum and third order maximum?

| A | $14.5^{\circ}$ |
| :--- | :--- |
| B | $18.6^{\circ}$ |
| C | $48.6^{\circ}$ |
| D | $71.4^{\circ}$ |

6 What is the angular speed of a satellite in a geo-synchronous orbit around the Earth?
A $\quad 7.3 \times 10^{-5} \mathrm{rad} \mathrm{s}^{-1}$
B $\quad 2.6 \times 10^{-1} \mathrm{rad} \mathrm{s}^{-1}$
C $\quad 24 \mathrm{rads}^{-1}$
D $\quad 5.0 \times 10^{6} \mathrm{rad} \mathrm{s}^{-1}$
$7 \quad$ An object moving at constant speed in a circle experiences a force that is
A in the direction of motion.
B outwards and at right angles to the direction of motion.
C inwards and at right angles to the direction of motion.
D opposite to the direction of motion.

8


The figure shows a smooth thin tube T through which passes a string with masses $m$ and $M$ attached to its ends. Initially the tube is moved so that the mass, $m$, travels in a horizontal circle of constant radius $r$, at constant speed, $v$. Which one of the following expressions is equal to $M$ ?
$\mathbf{A} \quad \frac{m v^{2}}{2 r}$

B $m v^{2} r g$
$\mathbf{C} \quad \frac{m v^{2} g}{r}$

D $\frac{m v^{2}}{r g}$

9 A planet has a radius half of the Earth's radius and a mass a quarter of the Earth's mass. What is the approximate gravitational field strength on the surface of the planet?

A $\quad 1.6 \mathrm{~N} \mathrm{~kg}^{-1}$
B $\quad 5.0 \mathrm{~N} \mathrm{~kg}^{-1}$
C $\quad 10 \mathrm{~N} \mathrm{~kg}^{-1}$
D $\quad 20 \mathrm{~N} \mathrm{~kg}^{-1}$

10 At a distance $R$ from a fixed charge, the electric field strength is $E$ and the electric potential is $V$. Which line, $\mathbf{A}$ to $\mathbf{D}$, gives the electric field strength and electric potential at a distance $2 R$ from the charge?

|  | electric field strength | electric potential |
| :---: | :---: | :---: |
| A | $\frac{E}{2}$ | $\frac{V}{4}$ |
| B | $\frac{E}{2}$ | $\frac{V}{2}$ |
| C | $\frac{E}{4}$ | $\frac{V}{2}$ |
| D | $\frac{E}{4}$ | $\frac{V}{4}$ |

11 Two charges, P and Q , are 100 mm apart.

$X$ is a point on the line between $P$ and $Q$. If the potential at $X$ is 0 V , what is the distance from P to X ?
A $\quad 40 \mathrm{~mm}$
B $\quad 45 \mathrm{~mm}$
C $\quad 50 \mathrm{~mm}$
D $\quad 60 \mathrm{~mm}$

12 Which line, $\mathbf{A}$ to $\mathbf{D}$, correctly describes the trajectory of charged particles which enter, at right angles, (a) a uniform electric field, and (b) a uniform magnetic field?

|  | (a) uniform <br> electric field | (b) uniform <br> magnetic field |
| :--- | :---: | :---: |
| A | circular | circular |
| B | circular | parabolic |
| C | parabolic | circular |
| D | parabolic | parabolic |

13 What is the binding energy of the nucleus ${ }_{92}^{238} \mathrm{U}$ ?
Use the following data:
$\begin{array}{ll}\text { mass of a proton } & =1.00728 \mathrm{u} \\ \text { mass of a neutron } & =1.00867 \mathrm{u} \\ \text { mass of a }{ }_{92}^{238} \mathrm{U} \text { nucleus } & =238.05076 \mathrm{u} \\ 1 \mathrm{u} & =931.3 \mathrm{MeV}\end{array}$
A $\quad 1685 \mathrm{MeV}$
B $\quad 1732 \mathrm{MeV}$
C $\quad 1755 \mathrm{MeV}$
D $\quad 1802 \mathrm{MeV}$

14 A deuterium nucleus and a tritium nucleus fuse together to form a helium nucleus, releasing a particle X in the process, according to the equation

$$
{ }_{1}^{2} \mathrm{H}+{ }_{1}^{3} \mathrm{H} \rightarrow{ }_{2}^{4} \mathrm{He}+\mathrm{X} .
$$

Which one of the following correctly identifies X ?
A electron
B neutron
C positron
D proton

15 A thermal nuclear reactor is shut down by inserting the control rods fully into the core. Which line, $\mathbf{A}$ to $\mathbf{D}$, shows correctly the effect of this action on the fission neutrons in the reactor?

|  | number of fission <br> neutrons | average kinetic energy <br> of fission neutrons |
| :--- | :--- | :--- |
| A | reduced | reduced |
| B | reduced | unchanged |
| C | unchanged | reduced |
| D | unchanged | unchanged |

## END OF SECTION A

