General Certificate of Education January 2006 Advanced Level Examination

PHYSICS (SPECIFICATION A) Unit 4 Waves, Fields and Nuclear Energy

ASSESSMENT and QUALIFICATIONS ALLIANCE

PA04

Section A

Friday 20 January 2006 9.00 am to 10.30 am

For this paper you must have:

- an objective test answer sheet
- a black ball-point pen
- a calculator
- a question paper/answer book for Section B (enclosed)

Time allowed: The total time for Section A and Section B of this paper is 1 hour 30 minutes

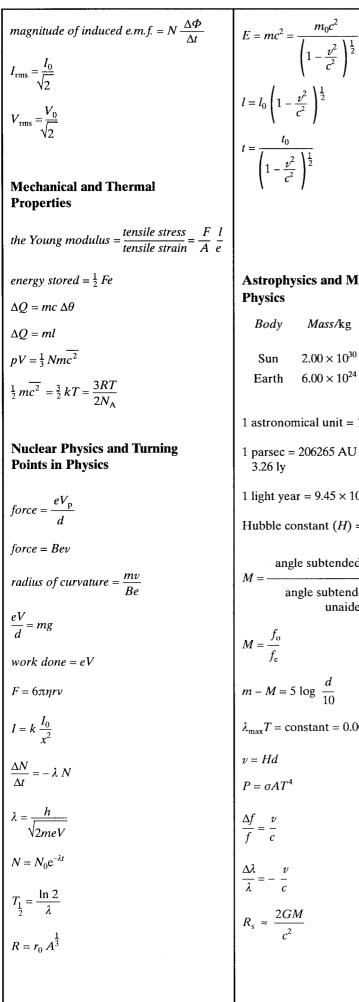
Instructions

- Use a black ball-point pen. Do not use pencil.
- Answer **all** questions in this section.
- For each question there are four responses. When you have selected the response which you think is the most appropriate answer to a question, mark this response on your answer sheet.
- Mark all responses as instructed on your answer sheet. If you wish to change your answer to a question, follow the instructions on your answer sheet.
- Do all rough work in this book **not** on the answer sheet.

Information

- The maximum mark for this section is 30.
- All questions in Section A carry equal marks. No deductions will be made for incorrect answers.
- A *Data Sheet* is provided on pages 3 and 4. You may wish to detach this perforated sheet at the start of the examination.
- The question paper/answer book for Section B is enclosed within this question paper.

PA04/1


Data Sheet

- A perforated *Data Sheet* is provided as pages 3 and 4 of this question paper.
- This sheet may be useful for answering some of the questions in the examination.
- You may wish to detach this sheet before you begin work.

Data Sheet

Fundamental constants and values					Mechanics and Applied	Fields, Waves, Quantum
Quantity Symbol Value Units					Physics	Phenomena
speed of lig		c	3.00×10^{8}	m s ⁻¹	v = u + at	E.
		μ_0	$4\pi \times 10^{-7}$	H m ^{-1}	$s = \left(\frac{u+\nu}{2}\right)t$	$g = \frac{F}{m}$
permittivity of free space charge of electron		e^{ε_0}	$8.85 \times 10^{-12} \\ 1.60 \times 10^{-19}$	F m ⁻¹ C	$3 = \left(\frac{1}{2}\right)^{2}$	$g = -\frac{GM}{r^2}$
the Planck constant		h	6.63×10^{-34}		a_{1} at ²	$s - r^2$
gravitational constant		G	6.67×10^{-11}	$N m^2 kg^{-2}$	$s = ut + \frac{at^2}{2}$	$a = \Delta V$
the Avogadro constant		NA	6.02×10^{23}	mol ⁻¹	$v^2 = u^2 + 2as$	$g = -\frac{\Delta V}{\Delta x}$
molar gas constant the Boltzmann constant		R k	8.31 1.38×10^{-23}			
the Stefan constant		σ	5.67×10^{-8}	$W m^{-2} K^{-4}$	$F = \frac{\Delta(m\nu)}{\Delta t}$	$V = -\frac{GM}{r}$
the Wien constant		α	2.90×10^{-3}	m K	P = Fv	$a = -(2\pi f)^2 x$
electron rest mass (equivalent to 5.5×10^{-4} u)		m _e	9.11×10^{-31}	kg		$v = \pm 2\pi f \sqrt{A^2 - x^2}$
(equivalent to 5.5×10^{-4} u) electron charge/mass ratio		e/m _e	1.76×10^{11}	C kg ⁻¹	$efficiency = \frac{power output}{power input}$	
proton rest	mass	mp	1.67×10^{-27}	kg	power input	$x = A \cos 2\pi f t$
	to 1.00728u)	1	0.59107	<u> </u>	$\omega = \frac{\nu}{r} = 2\pi f$	$T = 2\pi \sqrt{\frac{m}{k}}$
neutron res	ge/mass ratio	$e/m_{\rm p}$ $m_{\rm n}$	9.58 \times 10 ⁷ 1.67 \times 10 ⁻²⁷	C kg ⁻¹ kg		
	to 1.00867u)	<i>m</i> n	1.07 × 10		$a = \frac{v^2}{r} = r\omega^2$	$T = 2\pi \sqrt{\frac{l}{g}}$
	al field strength	-	9.81	N kg ⁻¹ m s ⁻²	r	$\lambda = \frac{\omega s}{D}$
acceleration atomic mass	n due to gravity	<i>g</i> u	9.81 1.661 \times 10 ⁻²⁷	m s ² kg	$I = \sum mr^2$	2
(1u is equiv		u	1.001 × 10	ĸg	$I = \sum m r$	$d\sin\theta = n\lambda$
931.3 MeV)					$E_{\rm k} = \frac{1}{2} I \omega^2$	$\theta \approx \frac{\lambda}{D}$
 Fundamen	tal particles				$\omega_2 = \omega_1 + \alpha t$	${}_1n_2 = \frac{\sin\theta_1}{\sin\theta_2} = \frac{c_1}{c_2}$
Class	Name	Symbol Rest		est energy	$\theta = \omega_1 t + \frac{1}{2} \alpha t^2$	$\frac{1}{1}\frac{1}{2} - \frac{1}{\sin \theta_2} - \frac{1}{c_2}$
Ciuss	Mume	U yri			$b = b_1 t + 2 \alpha t$	$_{1}n_{2} = \frac{n_{2}}{n_{1}}$
photon	/MeV photon γ 0		$\omega_2^2 = \omega_1^2 + 2\alpha\theta$	1		
lepton	neutrino	γ ν _e	0		$\theta = \frac{1}{2} (\omega_1 + \omega_2)t$	$\sin \theta_{\rm c} = \frac{1}{n}$
1. prom		ν_{μ}	0		$\theta = \frac{1}{2} \left(\omega_1 + \omega_2 \right) l$	E = hf
	electron	e^{\pm}	0.5	510999	$T = I\alpha$	$hf = \phi + E_{\rm k}$
	muon	μ^{\pm}	10	5.659	angular momentum = $I\omega$	$hf = E_1 - E_2$
mesons	pion	π^{\pm}		9.576	$W = T\theta$	$\lambda = \frac{h}{h} = \frac{h}{h}$
		π^0		4.972	$P = T\omega$	p mv
	kaon	K [±]		3.821	angular impulse = change of	$c = \frac{1}{\sqrt{\mu_0 \varepsilon_0}}$
1		K^0		7.762	angular momentum = Tt	$ abla \mu_0 \varepsilon_0$
baryons	proton neutron	p n		8.257 9.551	$\Delta Q = \Delta U + \Delta W$	Electricity
	neutron	11	75	7.551	$\Delta W = p \Delta V$ $p V^{\gamma} = \text{constant}$	
Properties	of quarks				pv = constant	$\epsilon = \frac{E}{O}$
	•	Dat	en en	rangeness	work done per cycle = area	\mathcal{Q} $\in = I(R+r)$
Type Charge		Baryon Stro number		ungeness	of loop	
				input power = calorific	$\frac{1}{1} = \frac{1}{1} + \frac{1}{1} + \frac{1}{1} + \cdots$	
u	$+\frac{2}{3}$		$-\frac{1}{3}$	0	value × fuel flow rate	$R_{\rm T} = R_1 + R_2 + R_3 + \cdots$
d	$-\frac{1}{3}$		$-\frac{1}{3}$	0	indicated power as (area of $p - V$	
s	$-\frac{1}{3}$	+	$-\frac{1}{3}$	-1	$loop) \times (no. of cycles/s) \times$	$P = I^2 R$ $F = V$
Geometrical equations					(no. of cylinders)	$E = \frac{F}{Q} = \frac{V}{d}$
					friction power = indicated	$F_{-} = 1 Q$
arc length = $r\theta$ circumference of circle = $2\pi r$					power – brake power	$E = \frac{1}{4\pi\varepsilon_0} \frac{Q}{r^2}$
area of circle = πr^2					$efficiency = \frac{W}{Q_{in}} = \frac{Q_{in} - Q_{out}}{Q_{in}}$	$E = \frac{1}{2} QV$
area of cylinder = $2\pi rh$					$Q_{\rm in}$ $Q_{\rm in}$	F = BIl
area of cylinder = $2\pi r^{n}$ volume of cylinder = $\pi r^{2}h$					maximum possible	F = BQv
area of sphere = $4\pi r^2$					efficiency = $\frac{T_{\rm H} - T_{\rm C}}{T_{\rm W}}$	$Q = Q_0 e^{-t/RC}$
<i>volume of sphere</i> = $\frac{4}{3}\pi r^3$				$= T_{\rm H}$	$\Phi = BA$	
M/Jan06/PA04 Section A						Turn over

4

$= l_0 \left(1 - \frac{v^2}{c^2}\right)^{\frac{1}{2}}$								
$=\frac{t_0}{\left(1-\frac{v^2}{c^2}\right)^{\frac{1}{2}}}$								
Astrophysics and Medical Physics								
Body Mass/kg Mean radius/m								
Sun 2.00×10^{30} 7.00×10^{8} Earth 6.00×10^{24} 6.40×10^{6}								
astronomical unit = 1.50×10^{11} m								
parsec = $206265 \text{ AU} = 3.08 \times 10^{16} \text{ m} =$ 3.26 ly								
light year = 9.45×10^{15} m								
$\text{Hubble constant } (H) = 65 \text{ km s}^{-1} \text{ Mpc}^{-1}$								
angle subtended by image at eye								
angle subtended by object at unaided eye								
$M = \frac{f_{\rm o}}{f_{\rm c}}$								
$n - M = 5 \log \frac{d}{10}$								
$T_{\rm max}T = {\rm constant} = 0.0029 \ {\rm m} \ {\rm K}$								
p = Hd								
$P = \sigma A T^4$								
$\frac{\Delta f}{f} = \frac{v}{c}$								
$\frac{\Delta\lambda}{\lambda} = -\frac{\nu}{c}$								
$R_s \approx \frac{2GM}{c^2}$								

Medical Physics

$$power = \frac{1}{f}$$

$$\frac{1}{u} + \frac{1}{v} = \frac{1}{f} \text{ and } m = \frac{v}{u}$$
intensity level = 10 log $\frac{I}{I_0}$
 $I = I_0 e^{-\mu x}$
 $\mu_m = \frac{\mu}{\rho}$

Electronics

Resistors

Preferred values for resistors (E24) Series: 1.0 1.1 1.2 1.3 1.5 1.6 1.8 2.0 2.2 2.4 2.7 3.0 3.3 3.6 3.9 4.3 4.7 5.1 5.6 6.2 6.8 7.5 8.2 9.1 ohms and multiples that are ten times greater

$$Z = \frac{V_{\rm rms}}{I_{\rm rms}}$$

$$\frac{1}{C_{\rm T}} = \frac{1}{C_1} + \frac{1}{C_2} + \frac{1}{C_3} + \cdots$$

$$C_{\rm T} = C_1 + C_2 + C_3 + \cdots$$

$$X_{\rm C} = \frac{1}{2\pi f C}$$

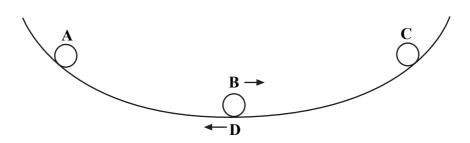
Alternating Currents

$$=\frac{1}{T}$$

f

Operational amplifier

$$G = \frac{V_{\text{out}}}{V_{\text{in}}} \qquad \text{voltage gain}$$
$$G = -\frac{R_{\text{f}}}{R_{1}} \qquad \text{inverting}$$
$$G = 1 + \frac{R_{\text{f}}}{R_{1}} \qquad \text{non-inverting}$$

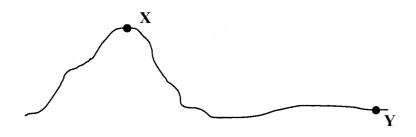

$$V_{\text{out}} = -R_{\text{f}} \left(\frac{V_1}{R_1} + \frac{V_2}{R_2} + \frac{V_3}{R_3} \right) \text{ summing}$$

M/Jan06/PA04 Section A

SECTION A

In this section each item consists of a question or an incomplete statement followed by four suggested answers or completions. You are to select the most appropriate answer in each case. You are advised to spend approximately **30 minutes** on this section.

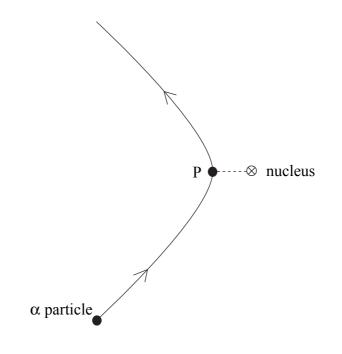
A ball bearing rolls on a concave surface, as shown in the diagram, in approximate simple harmonic motion. It is released from A and passes through the lowest point B before reaching C. It then returns through the lowest point D. At which stage, A, B, C or D, does the ball bearing experience maximum acceleration to the left?



- 2 A body moves with simple harmonic motion of amplitude A and frequency $\frac{b}{2\pi}$. What is the magnitude of the acceleration when the body is at maximum displacement?
 - A zero
 - **B** $4\pi^2 A b^2$
 - $\mathbf{C} \quad Ab^2$
 - $\mathbf{D} \qquad \frac{4\pi^2 A}{b^2}$
- **3** By approximately how many times is the wavelength of audible sound waves greater than the wavelength of light waves?
 - **A** 10^2
 - **B** 10⁶
 - $C = 10^{10}$
 - **D** 10^{14}
- 4 A stationary wave is formed by two identical waves of frequency 300 Hz travelling in opposite directions along the same line. If the distance between adjacent nodes is 0.60 m, what is the speed of each wave?
 - A $180 \,\mathrm{m\,s^{-1}}$
 - $B = 250 \,\mathrm{m \, s^{-1}}$
 - $C = 360 \,\mathrm{m \, s^{-1}}$
 - **D** $500 \,\mathrm{m \, s^{-1}}$

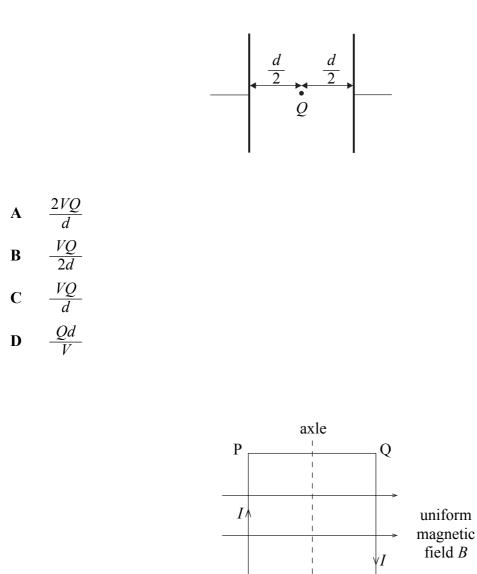
- 5 Interference maxima produced by a double source are observed at a distance of 1.0 m from the sources. In which one of the following cases are the maxima closest together?
 - A red light of wavelength 700 nm from sources 4.0 mm apart
 - **B** sound waves of wavelength 20 mm from sources 50 mm apart
 - C blue light of wavelength 450 nm from sources 2.0 mm apart
 - **D** surface water waves of wavelength 10 mm from sources 200 mm apart
- 6 A $400\,\mu\text{F}$ capacitor is charged so that the voltage across its plates rises at a constant rate from $0\,\text{V}$ to $4.0\,\text{V}$ in 20 s. What current is being used to charge the capacitor?
 - **Α** 5μΑ
 - **Β** 20 μA
 - C 40 μA
 - **D** 80 μA

7 What is the value of the angular velocity of a point on the surface of the Earth?


- A $1.2 \times 10^{-5} \text{ rad s}^{-1}$
- **B** $7.3 \times 10^{-5} \text{ rad s}^{-1}$
- C $2.6 \times 10^{-1} \text{ rad s}^{-1}$
- **D** $4.6 \times 10^2 \text{ rad s}^{-1}$
- 8 The diagram shows two positions, X and Y, at different heights on the surface of the Earth.

Which line, **A** to **D**, in the table gives correct comparisons at **X** and **Y** for gravitational potential and angular velocity?

	gravitational potential at X compared with Y	angular velocity at X compared with Y	
A	greater	greater	
В	greater	same	
С	greater	smaller	
D	same	same	


- **9** A projectile moves in a gravitational field. Which one of the following is a correct statement for the gravitational force acting on the projectile?
 - A The force is in the direction of the field.
 - **B** The force is in the opposite direction to that of the field.
 - **C** The force is at right angles to the field.
 - **D** The force is at an angle between 0° and 90° to the field.
- 10 The diagram shows the path of an α particle deflected by the nucleus of an atom. Point P on the path is the point of closest approach of the α particle to the nucleus. Which one of the following statements about the α particle on this path is correct?

- **A** Its acceleration is zero at P.
- **B** Its kinetic energy is greatest at P.
- **C** Its potential energy is least at P.
- **D** Its speed is least at P.

Turn over for the next question

11 Two parallel metal plates separated by a distance d have a potential difference V across them. What is the magnitude of the electrostatic force acting on a charge Q placed midway between the plates?

A coil, mounted on an axle, has its plane parallel to the flux lines of a uniform magnetic field B, as shown. When a current I is switched on, and before the coil is allowed to move,

R

A there are no forces due to *B* on the sides PQ and RS.

S

- **B** there are no forces due to *B* on the sides SP and QR.
- C sides SP and QR attract each other.
- **D** sides PQ and RS attract each other.

12

- 13 Protons, each of mass *m* and charge *e*, follow a circular path when travelling perpendicular to a magnetic field of uniform flux density *B*. What is the time taken for one complete orbit?
 - **A** $\frac{2\pi eB}{m}$ **B** $\frac{m}{2\pi eB}$

$$\mathbf{C} \qquad \frac{eB}{2\pi m}$$

D
$$\frac{2\pi m}{eB}$$

14 The reaction shown below occurs when a proton and a deuterium nucleus, ${}_{1}^{2}$ H, fuse to form a helium nucleus, ${}_{2}^{3}$ He.

 $^{1}_{1}p$ + $^{2}_{1}H$ \longrightarrow $^{3}_{2}He$ + Q

If the energy released, Q, is 5.49 MeV, what is the mass of the helium nucleus?

mass of ${}_{1}^{2}$ H nucleus = 2.01355 u mass of proton = 1.00728 u 1u is equivalent to 931.3 Me V

- **A** 0.00589 u
- **B** 3.01494 u
- C 3.02083 u
- **D** 3.02323 u
- 15 Which line, **A** to **D**, in the table gives a combination of materials that is commonly used for moderating, controlling and shielding respectively in a nuclear reactor?

	moderating	controlling	shielding
Α	graphite	carbon	lead
В	cadmium	carbon	concrete
C	cadmium	boron	lead
D	graphite	boron	concrete

There are no questions printed on this page

There are no questions printed on this page

There are no questions printed on this page