General Certificate of Education January 2007 Advanced Level Examination

PHYSICS (SPECIFICATION A) Unit 4 Waves, Fields and Nuclear Energy

ACCASESSMENT and QUALIFICATIONS ALLIANCE

PA04

Section A

Monday 22 January 2007 9.00 am to 10.30 am

For this paper you must have:

- an objective test answer sheet
- a black ball-point pen
- a calculator
- a question paper/answer book for Section B (enclosed).

Time allowed: The total time for Section A and Section B of this paper is 1 hour 30 minutes

Instructions

- Use a black ball-point pen. Do not use pencil.
- Answer all questions in this section.
- For each question there are four responses. When you have selected the response which you think is the most appropriate answer to a question, mark this response on your answer sheet.
- Mark all responses as instructed on your answer sheet. If you wish to change your answer to a question, follow the instructions on your answer sheet.
- Do all rough work in this book **not** on the answer sheet.

Information

- The maximum mark for this section is 30.
- All questions in Section A carry equal marks. No deductions will be made for incorrect answers.
- A *Data Sheet* is provided on pages 3 and 4. You may wish to detach this perforated sheet at the start of the examination.
- The question paper/answer book for Section B is enclosed within this question paper.

Data Sheet

- A perforated *Data Sheet* is provided as pages 3 and 4 of this question paper.
- This sheet may be useful for answering some of the questions in the examination.
- You may wish to detach this sheet before you begin work.

Data Sheet

Jata She	et				5	
Fundamental constants and values					Mechanics and Applied	Fields, Waves, Quantum
Quantity		Symbol	Value	Units	Physics	Phenomena
speed of ligh	ht in vacuo	c	3.00×10^{8}	m s ⁻¹	v = u + at	
	y of free space	μ_0	$4\pi \times 10^{-7}$	H m ^{-1}	(u + v)	$g = \frac{F}{m}$
permittivity	of free space	ε_0	8.85×10^{-12}		$s = \left(\frac{u+v}{2}\right)t$	
charge of ele		e	1.60×10^{-19}	C		$g = -\frac{GM}{r^2}$
the Planck c		h	6.63×10^{-34}	Js	$s = ut + \frac{at^2}{2}$	/- · /-
gravitationa		G	6.67×10^{-11}	$N m^2 kg^{-2}$	2	$g = -\frac{\Delta V}{\Delta x}$
the Avogadro constant		N _A	6.02×10^{23}	mol ⁻¹	$v^2 = u^2 + 2as$	$g = -\frac{1}{\Delta x}$
molar gas constant		R	8.31 1.38×10^{-23}			
the Boltzmann constant		k	1.38×10^{-4} 5.67×10^{-8}	JK^{-1}	$F = \frac{\Delta(mv)}{\Delta t}$	$V = -\frac{GM}{r}$
the Stefan constant		σ α	3.67×10 2.90×10^{-3}	mK	Δt	(a) a ²
the Wien constant electron rest mass		m_{e}	9.11×10^{-31}		P = Fv	$a = -(2\pi f)^2 x$
	to 5.5×10^{-4} u)	me	5.11 × 10	R _B	nowar output	$\nu = \pm 2\pi f \sqrt{A^2 - x^2}$
	rge/mass ratio	e/m _e	1.76×10^{11}	C kg ⁻¹	$efficiency = \frac{power \ output}{power \ input}$	-
proton rest	-	$m_{\rm p}$ 1.67 × 10 ⁻²⁷		kg	power inpui	$x = A \cos 2\pi f t$
	to 1.00728u)	P P		-	$w = \frac{v}{2} - 2\pi f$	$T = 2\pi \sqrt{\frac{m}{k}}$
proton charg	ge/mass ratio	e/m _p	9.58×10^{7}	C kg ⁻¹	$\omega = \frac{\nu}{r} = 2\pi f$	$ = = = \bigvee_k k $
neutron rest		$m_{\rm n}$	1.67×10^{-27}	kg	2	$T = 2\pi \sqrt{\frac{l}{g}}$
	to 1.00867u)				$a = \frac{v^2}{r} = r\omega^2$	
	l field strength		9.81	N kg ⁻¹ m s ⁻²	· · ·	$\lambda = \frac{\omega s}{D}$
	due to gravity	ľ	9.81	$m s^{-2}$		n = D
atomic mass		u	1.661×10^{-7}	²⁷ kg	$I = \sum mr^2$	$d\sin\theta = n\lambda$
(1u is equiva					$E_{\rm k} = \frac{1}{2} I \omega^2$	
931.3 MeV)		I	I		$E_{\rm k} = \frac{1}{2} I \omega^{-1}$	$\theta \approx \frac{\lambda}{D}$
					$\omega_2 = \omega_1 + \alpha t$	$\sin \theta_{\rm c}$ c.
Fundamen	tal particles				$w_2 = w_1 + \omega_1$	$_1n_2 = \frac{\sin \theta_1}{\sin \theta_2} = \frac{c_1}{c_2}$
Class	Name	Svn	nbol I	Rest energy	$\theta = \omega_1 t + \frac{1}{2} \alpha t^2$	L L
		2)			$v = w_1 r + 2 w_1$	$_{1}n_{2} = \frac{n_{2}}{n_{1}}$
				MeV	$\omega_2^2 = \omega_1^2 + 2\alpha\theta$	1
photon	photon	γ	($\sin \theta_{\rm c} = \frac{1}{n}$
lepton	neutrino	ν_{c}	()	$\theta = \frac{1}{2} (\omega_1 + \omega_2)t$	
		ν_{μ}	()		E = hf
	electron	e^{\pm}	().510999	$T = I\alpha$	$hf = \phi + E_{\rm k}$
	muon	μ^{\pm}	1	.05.659	angular momentum = $I\omega$	$hf = E_1 - E_2$
mesons	pion	π^{\pm}	1	39.576	$W = T\theta$, h h
		π^0	1	34.972	$P = T\omega$	$\lambda = \frac{h}{p} = \frac{h}{mv}$
	kaon	\mathbf{K}^{\pm}		93.821		
		K ⁰		97.762	angular impulse = change of	$c = \frac{1}{\sqrt{\mu_0 \varepsilon_0}}$
baryons	proton			38.257	angular momentum = Tt	W-0-0
Dai yons		р			$\Delta Q = \Delta U + \Delta W$	Electricity
	neutron	n	ý	39.551	$\Delta W = p \Delta V$	
					$pV^{\gamma} = \text{constant}$	$\epsilon = \frac{E}{O}$
Properties	of quarks					$e = \frac{1}{Q}$
Туре	Charge	Bar	yon S	Strangeness	work done per cycle = area	$\epsilon = I(R+r)$
~)}	0.11.1.80		nber .		of loop	
					input nower - calorific	$\frac{1}{1} = \frac{1}{1} + \frac{1}{1} + \frac{1}{1} + \cdots$
u	$+\frac{2}{3}$	+	$\frac{1}{3}$	0	input power = calorific value × fuel flow rate	R_{T} R_{1} R_{2} R_{3}
d	$-\frac{1}{3}$	+	1	0	vance ~ just jiow rate	$R_{\rm T}=R_1+R_2+R_3+\cdots$
u	-		•		indicated power as (area of $p - V$	
S	$-\frac{1}{3}$	-+-	$\frac{1}{3}$	-1	$loop) \times (no. of cycles/s) \times$	$P = I^2 R$
					(no. of cylinders)	$E = \frac{F}{O} = \frac{V}{d}$
Geometric	al equations					$L = \overline{Q} = \overline{d}$
					friction power = indicated	1 0
$arc \ length = r\theta$					power – brake power	$E = \frac{1}{4\pi\varepsilon_0} \frac{Q}{r^2}$
circumferen	ce of circle = 2π	r				$4\pi\varepsilon_0 r^2$
-		-			$afficiency = W = Q_{in} - Q_{out}$	$E = \frac{1}{2}QV$
area of circle = πr^2					$efficiency = \frac{W}{Q_{\rm in}} = \frac{Q_{\rm in} - Q_{\rm out}}{Q_{\rm in}}$	1 -
area of cylin	$der = 2\pi rh$					F = BIl
volume of cylinder = $\pi r^2 h$					maximum possible	F = BQv
area of sphere = $4\pi r^2$					-	$Q = Q_0 e^{-t/RC}$
volume of sphere = $\frac{4}{3}\pi r^3$					$efficiency = \frac{T_{\rm H} - T_{\rm C}}{T_{\rm H}}$	
volume of sp	phere = $\frac{1}{3}\pi r^2$				- 11	$\Phi = BA$

M/Jan07/PA04

magnitude of induced emf = $N \frac{\Delta \Phi}{\Delta t}$ $I_{\rm rms} = \frac{I_0}{\sqrt{2}}$ $V_{\rm rms} = \frac{V_0}{\sqrt{2}}$ **Mechanical and Thermal Properties** the Young modulus = $\frac{\text{tensile stress}}{\text{tensile strain}} = \frac{F}{A} \frac{l}{e}$ energy stored = $\frac{1}{2}$ Fe $\Delta Q = mc \ \Delta \theta$ $\Delta Q = ml$ $pV = \frac{1}{3}Nmc^2$ $\frac{1}{2}m\overline{c^2} = \frac{3}{2}kT = \frac{3RT}{2N_A}$ **Nuclear Physics and Turning Points in Physics** $force = \frac{eV_p}{d}$ force = Bevradius of curvature = $\frac{mv}{Be}$ $\frac{eV}{d} = mg$ work done = eV $F=6\pi\eta rv$ $I = k \frac{I_0}{x^2}$ $\frac{\Delta N}{\Delta t} = - \lambda \ N$ $\lambda = \frac{h}{\sqrt{2meV}}$ $N = N_0 \mathrm{e}^{-\lambda t}$ $T_{\frac{1}{2}} = \frac{\ln 2}{\lambda}$ $R = r_0 A^{\frac{1}{3}}$

$$H = mc^{2} = \frac{m_{0}c^{2}}{\left(1 - \frac{v^{2}}{c^{2}}\right)^{\frac{1}{2}}}$$

$$l = l_{0} \left(1 - \frac{v^{2}}{c^{2}}\right)^{\frac{1}{2}}$$

$$l = l_{0} \left(1 - \frac{v^{2}}{c^{2}}\right)^{\frac{1}{2}}$$

$$L = \frac{t_{0}}{\left(1 - \frac{v^{2}}{c^{2}}\right)^{\frac{1}{2}}}$$

$$Body \quad Mass/kg \quad Mean radius/m$$
Sun $2.00 \times 10^{30} \quad 7.00 \times 10^{8}$
Earth $6.00 \times 10^{24} \quad 6.40 \times 10^{6}$

$$1 \text{ astronomical unit} = 1.50 \times 10^{11} \text{ m}$$

$$1 \text{ parsec} = 206265 \text{ AU} = 3.08 \times 10^{16} \text{ m} = 3.26 \text{ ly}$$

$$1 \text{ light year} = 9.45 \times 10^{15} \text{ m}$$
Hubble constant (H) = 65 km s⁻¹ Mpc⁻¹

$$M = \frac{\text{angle subtended by image at eye}}{\text{angle subtended by object at}}$$

$$M = \frac{f_{0}}{f_{c}}$$

$$m - M = 5 \log \frac{d}{10}$$

$$\lambda_{max}T = \text{constant} = 0.0029 \text{ m K}$$

$$v = Hd$$

$$P = \sigma AT^{4}$$

$$\frac{\Delta f}{f} = \frac{v}{c}$$

 $R_{\rm s} \approx \frac{2GM}{2}$

Medical Physics

$$power = \frac{1}{f}$$

$$\frac{1}{u} + \frac{1}{v} = \frac{1}{f} \text{ and } m = \frac{v}{u}$$

$$intensity \ level = 10 \ \log \frac{I}{I_0}$$

$$I = I_0 e^{-\mu x}$$

$$\mu_m = \frac{\mu}{\rho}$$

Electronics

Resistors

Preferred values for resistors (E24) Series: 1.0 1.1 1.2 1.3 1.5 1.6 1.8 2.0 2.2 $2.4\ 2.7\ 3.0\ 3.3\ 3.6\ 3.9\ \ 4.3\ 4.7\ 5.1\ 5.6\ 6.2$ 6.8 7.5 8.2 9.1 ohms and multiples that are ten times greater

$$Z = \frac{V_{\rm rms}}{I_{\rm rms}}$$

$$\frac{1}{C_{\rm T}} = \frac{1}{C_1} + \frac{1}{C_2} + \frac{1}{C_3} + \cdots$$

$$C_{\rm T} = C_1 + C_2 + C_3 + \cdots$$

$$X_{\rm C} = \frac{1}{2\pi f C}$$

Alternating Currents

 $f = \frac{1}{T}$

G =

V

Operational amplifier

 $G = \frac{V_{\text{out}}}{V_{\text{in}}}$ voltage gain

$$-\frac{R_{\rm f}}{R_{\rm 1}}$$
 inverting

 $G = 1 + \frac{R_{\rm f}}{R_1}$ non-inverting

$$T_{\text{out}} = -R_{\text{f}}\left(\frac{V_1}{R_1} + \frac{V_2}{R_2} + \frac{V_3}{R_3}\right) \text{ summing}$$

M/Jan07/PA04

SECTION A

In this section each item consists of a question or an incomplete statement followed by four suggested answers or completions. You are to select the most appropriate answer in each case. You are advised to spend about **30 minutes** on this section.

- 1 A particle oscillates with undamped simple harmonic motion. Which one of the following statements about the acceleration of the oscillating particle is true?
 - A It is least when the speed is greatest.
 - **B** It is always in the opposite direction to its velocity.
 - **C** It is proportional to the frequency.
 - **D** It decreases as the potential energy increases.
- 2 A simple pendulum and a mass-spring system both have the same time period *T* at the surface of the Earth. If taken to another planet where the acceleration due to gravity is twice that on Earth, which line, **A** to **D**, in the table gives the correct new periods?

	simple pendulum	mass-spring
A	$T\sqrt{2}$	$\frac{T}{\sqrt{2}}$
В	$\frac{T}{\sqrt{2}}$	Т
С	$T\sqrt{2}$	Т
D	$\frac{T}{\sqrt{2}}$	$T\sqrt{2}$

3 A particle of mass 0.20 kg moves with simple harmonic motion of amplitude 2.0×10^{-2} m. If the total energy of the particle is 4.0×10^{-5} J, what is the time period of the motion?

A
$$\frac{\pi}{4}$$
 seconds

B $\frac{\pi}{2}$ seconds

- C π seconds
- **D** 2π seconds

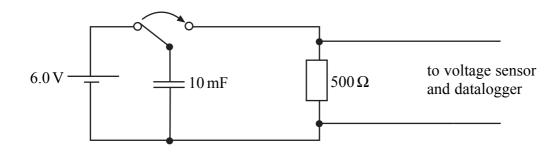
4 A loudspeaker produces sound waves in air of wavelength 0.68 m and speed 340 m s^{-1} . How many cycles of vibration does the loudspeaker diaphragm make in 10 ms?

A 5
B 10
C 50
D 100

5 Two long pipes produce stationary waves at their fundamental frequency. Pipe X, of length *l*, is closed at one end. Pipe Y, which is open at both ends, produces vibrations of the same frequency as pipe X. What is the length of pipe Y?

 $\mathbf{A} \quad \frac{l}{4}$ $\mathbf{B} \quad \frac{l}{2}$ $\mathbf{C} \quad 2l$ $\mathbf{D} \quad 4l$

6 How many of the following four equations correctly represent the energy *E* stored by a capacitor of capacitance *C* when it is charged to a pd *V* and its charge is *Q*?

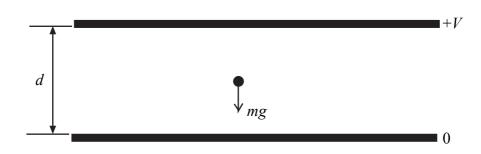

$$E = \frac{1}{2} \frac{Q^2}{C}$$
 $E = \frac{1}{2} \frac{C}{V^2}$ $E = \frac{1}{2} QC$ $E = \frac{1}{2} CV^2$

A one

B two

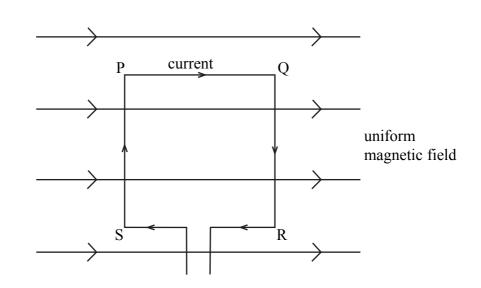
- C three
- **D** four

7 A voltage sensor and a datalogger are used to record the discharge of a 10 mF capacitor in series with a 500Ω resistor from an initial pd of 6.0 V. The datalogger is capable of recording 1000 readings in 10 s. Which line, A to D, in the table gives the pd and the number of readings made after a time equal to the time constant of the discharge circuit?


	potential difference/V	number of readings
Α	2.2	50
В	3.8	50
С	2.2	500
D	3.8	500

- 8 The relationship between two physical quantities may be inverse, inverse square or exponential. Which line, A to D, in the table shows correct relationships for
 - (i) pd and time in capacitor discharge,
 - (ii) electric field strength and distance in a radial field, and
 - (iii) gravitational potential and distance in a radial field?

	(i) capacitor discharge	(ii) electric field strength	(iii) gravitational potential
Α	exponential	inverse	inverse square
В	inverse	inverse square	exponential
С	inverse square	exponential	inverse
D	exponential	inverse square	inverse


- **9** For a particle moving in a circle with uniform speed, which one of the following statements is **incorrect**?
 - **A** The velocity of the particle is constant.
 - **B** The force on the particle is always perpendicular to the velocity of the particle.
 - **C** There is no displacement of the particle in the direction of the force.
 - **D** The kinetic energy of the particle is constant.
- 10 What is the angular speed of a car wheel of diameter 0.400 m when the speed of the car is 108 km h^{-1} ?
 - A 75 rad s^{-1}
 - **B** $150 \, \text{rad s}^{-1}$
 - \mathbf{C} 270 rad s⁻¹
 - **D** 540 rad s^{-1}

11

The diagram shows a charged oil drop of weight mg, which is stationary in the electric field between two parallel plates. If the potential difference between the plates is V and the separation of the plates is d, what is the charge on the oil drop?

- **A** $-\frac{Vd}{mg}$
- **B** $-\frac{V}{mgd}$
- C mgVd
- **D** $-\frac{mgd}{V}$

The diagram shows a square coil PQRS placed in a uniform magnetic field with the plane of the coil parallel to the lines of magnetic field. A constant current is passed round the coil in the direction shown, causing a force to act on side PS of the coil. Which one of the following statements about the forces acting on the other sides of the coil is correct?

- A A force acts on each of the other sides of the coil.
- **B** No force acts on sides PQ and RS of the coil.
- C A force acts on side RS and an equal and opposite force to this force acts on side PQ.
- **D** A force acts on side QR in the same direction as the force that acts on PS.
- 13 Which one of the following is **not** a unit of magnetic flux?
 - \mathbf{A} N m \mathbf{A}^{-1}
 - B Wb

12

- $C T m^2$
- \mathbf{D} V s⁻¹
- 14 The output power of a nuclear reactor is provided by nuclear fuel which decreases in mass at a rate of 4×10^{-6} kg per hour. What is the maximum possible output power of the reactor?
 - A 28 kW
 - **B** 50 MW
 - **C** 100 MW
 - **D** 200 MW

15 Which one of the following statements concerning a thermal nuclear reactor containing uranium is correct?

If the amount of fissile material in the reactor exceeds the critical mass, the fission reactions

- A can be controlled by a suitable absorber of neutrons.
- **B** can be controlled by a suitable moderating material.
- C can be controlled if the coolant flows at a fast rate.
- **D** cannot be controlled.

END OF SECTION A

There are no questions printed on this page

There are no questions printed on this page