

GCE

Physics A

Unit PHA7/W

Copyright ${ }^{\circledR} 2003$ AQA and its licensors. All rights reserved.

Units 5-9: Section A

1

(a)(i)

correct arrows: A \checkmark
B \checkmark
C \checkmark
(a)(ii) $\mathrm{e}^{-1}+{ }_{\mathrm{Z}}^{\mathrm{A}} \mathrm{X} \rightarrow{ }_{\mathrm{Z}-1}^{\mathrm{A}} \mathrm{Y}+v_{\mathrm{e}}$
(b)(i) $\quad\left((4.18-1.33) \times 10^{-13}\right)=2.85 \times 10^{-13}(\mathrm{~J})$
(b)(ii) $1.33 \times 10^{-13}(\mathrm{~J})$
$0.30 \times 10^{-13}(\mathrm{~J}) \quad$ for 3 correct values
$1.63 \times 10^{-13}(\mathrm{~J})$
(b)(iii) (use of $\Delta E=h f$ gives) $f\left(=\frac{1.63 \times 10^{-13}}{6.63 \times 10^{-34}}\right)=2.46 \times 10^{20} \mathrm{~Hz}$
(allow C.E. from (b)(ii) if largest value taken)
(c)(i) (\checkmark for each precaution with reason to $\left.\max ^{2} 2\right)$
handle with (long) (30 cm) tweezers
because the radiation intensity decreases with distance
store in a lead box (immediately) when not in use
to avoid unnecessary exposure to radiation
[or any sensible precaution with reason]
(b)(ii) $\quad \gamma$ rays are more penetrating and are therefore more hazardous (to the internal organs of the body)
β^{-}particles are more hazardous because they are more ionising (\checkmark for any argued case for either radiation)

Unit 7 : Section B

2
(a) (use of $v=\omega r$ gives $\omega=\frac{3.5}{0.2}=18 \mathrm{rad} \mathrm{s}^{-1}$
(b)(i)
$\alpha=\frac{\omega_{2}-\omega_{1}}{t}=(-) \frac{(17.5+17.5)}{4.6}=(-) 7.6 \mathrm{rad} \mathrm{s}^{-2} \checkmark$
(b)(ii) (use of $T=I \alpha$ gives) $T=40 \times 7.6=300 \mathrm{~N} \mathrm{~m}$ (allow C.E. for value of α from (i))
(b)(iii) (use of angular impulse $=T t$ gives)
angular impulse $=300 \times 4.6=1.4 \times 10^{3} \mathrm{~kg} \mathrm{~m}^{2} \mathrm{rad} \mathrm{s}^{-1}$
(allow C.E. for value of T from (ii))
(b)(iv) uniform torque therefore uniform acceleration, $\therefore t=2.3 \mathrm{~s}$
$\theta=\frac{\left(\omega_{1}+\omega_{2}\right)}{2} t=\frac{17.5}{2} 2.3=20(.13)(\mathrm{rad}) \checkmark$
number of turns $=\frac{20.13}{2 \pi}=3.2$ (so 3 complete turns) \checkmark

3
(a)(i) torque $=4 \times 0.60 \times 1.8=4.3(2) \mathrm{N} \mathrm{m}$
(a)(ii) $\quad \omega=\frac{2 \pi}{110}=5.7(1) \times 10^{-2}\left(\mathrm{rad} \mathrm{s}^{-1}\right) \checkmark$
at steady speed, frictional torque $=$ applied torque \checkmark
(use of $P=T \omega$ gives) $P=4.32 \times 5.71 \times 10^{-2}=0.25 \mathrm{~W}$ (allow C.E. for value of T from (i))
(b)(i) average power $=0.5 \times 0.25=0.125$ (W) \checkmark
energy $=$ average power \times time $=0.125 \times 12 \checkmark \quad(=1.5 \mathrm{~J})$
(allow C.E. for value of P from (a)(ii))
(b)(ii) (use of kinetic energy $=1 / 2 I \omega^{2}=1.5$ gives)
$I=\frac{2 \times 1.5}{\left(5.71 \times 10^{-2}\right)^{2}}=910 \mathrm{~kg} \mathrm{~m}^{2}$
(allow C.E. for value of ω from (a)(ii))

4
(a) (use of $p V^{\gamma}=$ constant gives)

$$
1.01 \times 10^{5} \times\left(4.25 \times 10^{-4}\right)^{1.4}=1.70 \times 10^{5} \times V^{1.4}
$$

V calculated correctly $\left(=2.93 \times 10^{-4}\right)$
or substitution to show equal $p V^{\gamma} \checkmark$
(b) $\frac{p_{1} V_{1}}{T_{1}}=\frac{p_{2} V_{2}}{T_{2}} \checkmark$

$$
\begin{equation*}
T_{1}=273+23=296(\mathrm{~K}) \checkmark \tag{3}
\end{equation*}
$$

$T_{2}=\frac{1.7 \times 10^{5} \times 2.93 \times 10^{-4} \times 296}{1.01 \times 10^{5} \times 4.25 \times 10^{-4}}=343 \mathrm{~K} \quad\left(70{ }^{\circ} \mathrm{C}\right)$
(c) slow compression is isothermal (temperature does not increase) greater change in volume needed to rise to same final pressure (or correct $p V$ sketches showing adiabatic and isothermal processes) hence less

5
(a) work per cycle $=$ area enclosed $=6 \times 10^{5} \times 4.5 \times 10^{-3}=2.7(\mathrm{~kJ})$
power $=$ work output per sec $=\frac{2700}{0.20}=13.5 \mathrm{~kW}$
(allow C.E. for incorrect work per cycle)
(b) modified engine uses less steam per cycle
so lower energy input per cycle
input energy per cycle $\approx \frac{1}{3}$ of that in unmodified cycle
work output per cycle is less than for unmodified cycle
work output per cycle $>1 / 2$ of that in unmodified cycle hence greater efficiency

Quality of Written Communication (Q1(c)(i) and Q5(b))

