

GCE AS and A Level

Physics A

AS exams 2009 onwards A2 exams 2010 onwards

Unit 5C: Approved specimen mark scheme

Version 1.1

General Certificate of Education

Physics 2451

Specification A

PHA5C Applied Physics

Mark Scheme

The specimen assessment materials are provided to give centres a reasonable idea of the general shape and character of theplanned question papers and mark schemes in advance of the first operational exams.

Mark schemes are prepared by the Principal Examiner and considered, together with the relevant questions, by a panel of subject teachers. This mark scheme includes any amendments made at the standardisation meeting attended by all examiners and is the scheme which was used by them in this examination. The standardisation meeting ensures that the mark scheme covers the candidates' responses to questions and that every examiner understands and applies it in the same correct way. As preparation for the standardisation meeting each examiner analyses a number of candidates' scripts: alternative answers not already covered by the mark scheme are discussed at the meeting and legislated for. If, after this meeting, examiners encounter unusual answers which have not been discussed at the meeting they are required to refer these to the Principal Examiner.

It must be stressed that a mark scheme is a working document, in many cases further developed and expanded on the basis of candidates' reactions to a particular paper. Assumptions about future mark schemes on the basis of one year's document should be avoided; whilst the guiding principles of assessment remain constant, details will change, depending on the content of a particular examination paper.

Further copies of this Mark Scheme are available to download from the AQA Website: www.aqa.org.uk

Copyright © 2007 AQA and its licensors. All rights reserved.

COPYRIGHT

AQA retains the copyright on all its publications. However, registered centres for AQA are permitted to copy material from this booklet for their own internal use, with the following important exception: AQA cannot give permission to centres to photocopy any material that is acknowledged to a third party even for internal use within the centre.

Set and published by the Assessment and Qualifications Alliance.

PHA5C: Applied Physics

Question 1				
(a)	$22000 (\text{rev min}^{-1}) \times 2\pi/60 \checkmark$ (=230)	$0 \mathrm{rads}^{-1}$)	ſ	
	energy stored $(=\frac{1}{2}I\omega^2) = \frac{1}{2} \times 0.60 \times 2300^2 \checkmark$ (=1.6	MJ)	2	
(b) (i)	$t = E/P = \frac{1.6 \times 10^6}{8.7} \checkmark = 1.84 \times 10^5 \mathrm{s}\checkmark \tag{51 ho}$	ours)		
(ii)	torque = $\frac{\text{power}}{\text{average speed}} = \frac{8.7}{(2300/2)} = 7.5(6) \times 10^{-3} \checkmark \text{ N m} \checkmark$		max 3	
	or $T = I a = 0.60 \times 2300/(1.84 \times 10^5) = 7.5 \times 10^{-3} \checkmark \text{ N m } \checkmark$			
(c)	in B more of the mass is at a greater radius than in A \checkmark		2	
	so <i>I</i> greater and so energy stored greater (for same speed) \checkmark			
		Total	7	

Question 2		
(a) (i)	energy: kinetic energy = $\frac{1}{2}I\omega^2$, \rightarrow small stored energy [or less work/energy needed to produce change] power = rate of energy change, fast change \rightarrow high power torque: $T = I\alpha$, α large so large torques needed unless <i>I</i> small, momentum, impulse: $L = I\omega$, impulse = ΔL so unless <i>I</i> small, large angular impulses are needed <i>marking</i> : for any one of the above: for correct consideration \checkmark for mathematical justification \checkmark	4
(ii)	explanations based on $I = mr^2 \checkmark$ low mass , small diameter \checkmark	
(b) (i)	$\alpha = \frac{\omega_1 - \omega_2}{t} = \frac{120 + 120}{50 \times 10^{-3}} = 4.8 \times 10^3 \text{ rad s}^{-2} \checkmark$	
(ii)	$T = I\alpha = 4.4 \times 10^{-5} \times 4.8 \times 10^{3} = 0.21(1) \text{ N m } \checkmark$ (allow C.E. from incorrect value of α from (i))	3
(iii)	$\theta = \left(\frac{\omega_1 + \omega_2}{2}\right) t = \left(\frac{120 + 0}{2}\right) 25 \times 10^{-3} = 1.5 \text{ rad }\checkmark$	
	Total	7

Question 3		
(a)	(use of pV'' = constant gives) 1.01 × 10 ⁵ × (4.25 × 10 ⁻⁴) ^{1.4} = 1.70 × 10 ⁵ × $V^{1.4} \checkmark$	2
	<i>V</i> calculated correctly (= 2.93×10^{-4} Pa) \checkmark	
(b)	$\frac{p_1 V_1}{T_1} = \frac{p_2 V_2}{T_2} \checkmark$	
	$T_1 = 273 + 23 = 296 (\mathrm{K}) \checkmark$	4
	$T_2 = \frac{1.7 \times 10^5 \times 2.93 \times 10^{-4} \times 296}{1.01 \times 10^5 \times 4.25 \times 10^{-4}} \checkmark = 343 \text{ K} (70^{\circ}\text{C}) \checkmark$	
	Total	6

Que	stion 4		
(a)	(i)	work done = area enclosed by curve ABCD = $20 \text{ kJ} (\pm 2 \text{ kJ}) \checkmark$	
		satisfactory method used to find area e.g. counting squares \checkmark	
		correct scaling factor used (e.g. 1 small square = 40 J) \checkmark	
	(ii)	power = 20 kJ per cycle × 3 cycle per second = $60 \text{ kW} (\pm 6 \text{ kW}) \checkmark$	6
	(iii)	input power (= fuel flow rate × calorific value)	0
		$= 2.4 \times 10^{-2} \times 34 \times 10^{6} = 816 \mathrm{kW}$	
		efficiency = $P_{\text{out}}/P_{\text{in}} = \frac{60 \times 10^3}{816 \times 10^3} \times 100 = 0.07 \text{ or } 7\% \checkmark$	
(b)		modified engine:	
		same mass of steam required	
		less fuel required because of recycled heat	
		greater work output per cycle because loop larger	3
		same speed so greater power output	
		greater efficiency as P_{out} is greater and P_{in} less	
		$\checkmark \checkmark \checkmark$ any three	
		Total	9

Que	stion 5		
(a)	(i)	$P_{\rm out} = 0.36 \times 34.2 = 12.3 \rm kW \checkmark$	
	(ii)	$P_{\rm farm} = 12.3 \times 2.5 = 30.8 \rm kW$ 🗸	3
	(iii)	$P_{\text{stream}} = 30.8 - 12.3 = 18.5 \text{ kW} \checkmark$	
(b)		two reasons in support of either choice	
		heat pump ✓	
		both systems use the same fuel so cost of same amount of fuel is same \checkmark	
		heat pump uses less fuel for the same output \checkmark	max 5
		(or gives greater output for same amount of fuel \checkmark)	
		can also use energy rejected from engine for heating \checkmark	
		Total	6

		Assessment Objectives	
Que	estion No	Ability tested	Marks
1	(a)	AO1	2
	(b)	AO1/AO2	3
	(c)	AO2	2
		Question Total	7
2	(a)	AO1	2
	(b)	AO2	5
		Question Total	7
3	(a)	AO1/AO2	2
	(b)	AO2	4
		Question Total	6
4	(a)	AO1/AO2	6
	(b)	AO2	3
		Question Total	9
5	(a)	AO1	3
	(b)	AO2/AO3	3
		Question Total	6
		Total	35

	Summary	
Marks	Ability tested	%
13	AO1 Knowledge and Understanding	37
21	AO2 Application	60
1	AO3 How Science Works	3

	Summary Common Section & Section C Applied Physics	
Marks	Ability tested	%
26	AO1 Knowledge and Understanding	35
45	AO2 Application	60
4	AO3 How Science Works	5