

ASSESSMENT and QUALIFICATIONS ALLIANCE

Mark scheme June 2003

GCE

Physics A

Unit PHA5/W

Copyright © 2003 AQA and its licensors. All rights reserved.

The Assessment and Qualifications Alliance (AQA) is a company limited by guarantee registered in England and Wales 3644723 and a registered charity number 1073334 Registered address: Addleshaw Booth & Co., Sovereign House, PO Box 8, Sovereign Street, Leeds LS1 1HQ Kathleen Tattersall: *Director General*

Units 5 - 9 : Section A

 $\frac{1}{2}$

(a)(i) $^{A}_{Z}X$ C А В correct arrows: A \checkmark B✓ C✓ (a)(ii) $e^{-1} + {}^{A}_{Z}X \rightarrow {}^{A}_{Z-1}Y + v_{e} \checkmark$ (4) (b)(i) $((4.18 - 1.33) \times 10^{-13}) = 2.85 \times 10^{-13}$ (J) \checkmark (b)(ii) 1.33×10^{-13} (J) 0.30×10^{-13} (J) 1.63×10^{-13} (J) for 3 correct values \checkmark (b)(iii) (use of $\Delta E = hf$ gives) $f\left(=\frac{1.63 \times 10^{-13}}{6.63 \times 10^{-34}}\right) = 2.46 \times 10^{20}$ Hz \checkmark (allow C.E. from (b)(ii) if largest value taken) (3) (c)(i) (\checkmark for each precaution <u>with</u> reason to _{max}2) handle with (long) (30 cm) tweezers because the radiation intensity decreases with distance store in a lead box (immediately) when not in use to avoid unnecessary exposure to radiation [or any sensible precaution with reason] (b)(ii) γ rays are more penetrating and are therefore more hazardous (to the internal organs of the body) β^{-} particles are more hazardous because they are more ionising \checkmark

(\checkmark for any argued case for either radiation)

 $\frac{(3)}{(10)}$

Unit 5 : Section B

2

(a)	ray diagram to show: rays reflected at concave mirror ✓		
	rays reflected at convex mirror ✓ rays crossing in front of eyepiece ✓	(3)	
(b)	different focal points for rays at different distances from axis \checkmark shortest focal length for paraxial rays \checkmark	(2)	
(c)	light of different wavelengths refracted to different foci \checkmark diagram showing refraction with blue focal length closest to lens \checkmark	max <u>(2)</u> (7)	

3
(a)(i)
$$d = \frac{50 \times 10^6}{3.26} = 15.3 \times 10^6$$
 (pc) \checkmark

(a)(ii) (use of
$$v = Hd$$
 gives) $v = 65 \times 10^{-6} (\text{km s}^{-1} \text{ pc}^{-1}) \times 15.3 \times 10^{6} \checkmark \approx (1000 \text{ km s}^{-1})$

(a)(iii) (use of
$$\frac{\Delta\lambda}{\lambda} = -\frac{v}{c}$$
 gives) $\Delta\lambda = \frac{1000 \times 10^3}{3 \times 10^8} \times 656.3$ (nm) = 2.19 (nm) \checkmark
(allow C.E. for value of v from (ii)
 $\lambda_{\text{galaxy}} = 656.3 + 2.19 = 658.5$ nm \checkmark (4)

(b) for the furthest point of the Universe,
$$d = \frac{c}{H} \checkmark$$

age of Universe $= \frac{d}{c} = \frac{1}{H} \checkmark$
[or use of $v = Hd$ and $t = \frac{d}{v} \checkmark$
if all started from same point
 $t = \text{age of Universe} = \frac{1}{H} \checkmark$]
assumption: that *H* remains constant \checkmark

<u>(3)</u> (7)

4		
(a)	Hertzsprung -Russell diagram to show: absolute magnitude scale from +15 to −10 ✓ temperature scale from 50 000 to 2500 (K) ✓ main sequence drawn correctly ✓ giants and dwarfs shown in correct areas ✓	(4)
(b)	Alnitak : helium (absorption)Sirius : hydrogen Balmer (absorption) linesSun : metals (absorption)Antares : molecular bands	(2)
(c)	reference to $P = \sigma A T^4 \checkmark$ class M (Antares) cooler than class O (Alnitak) \checkmark but same brightness, therefor cooler star bigger \checkmark so Antares has larger surface area \checkmark	max <u>(3)</u> (9)
5 (a)(i)	supernova: star whose luminosity increase enormously due to it exploding ✓	
(a)(ii)	neutron star: star with the density of nuclear matter \checkmark	
(a)(iii)	black hole: an object whose escape velocity is greater than speed of light ✓	(3)
(b)	$\left(\text{use of } R = \frac{2GM}{c^2} \text{ gives}\right) R = \frac{2 \times 6.67 \times 10^{-11} \times 10 \times 2 \times 10^{30}}{\left(3 \times 10^8\right)^2} \checkmark$	
	$= 2.96 \times 10^4 \text{ m} \checkmark$	<u>(2)</u> (5)

Quality of Written Communication (Q1(c)(i) and Q4(c))
$$\checkmark$$
(2)(2)(2)