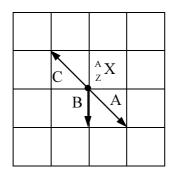


Mark scheme June 2003

GCE


Physics A

Unit PHA6/W

Copyright © 2003 AQA and its licensors. All rights reserved.

Units 5 - 9: Section A

(a)(i)

correct arrows: A ✓

B ✓

(a)(ii)
$$e^{-1} + {}^{A}_{Z}X \rightarrow {}^{A}_{Z-1}Y + v_{e} \checkmark$$
 (4)

(b)(i)
$$((4.18 - 1.33) \times 10^{-13}) = 2.85 \times 10^{-13} \text{ (J)} \checkmark$$

(b)(ii)
$$1.33 \times 10^{-13}$$
 (J)
 0.30×10^{-13} (J) for 3 correct values \checkmark
 1.63×10^{-13} (J)

(b)(iii) (use of
$$\Delta E = hf$$
 gives) $f\left(=\frac{1.63 \times 10^{-13}}{6.63 \times 10^{-34}}\right) = 2.46 \times 10^{20} \text{ Hz } \checkmark$ (allow C.E. from (b)(ii) if largest value taken)

(c)(i) (\checkmark for each precaution with reason to $_{max}2$)

handle with (long) (30 cm) tweezers because the radiation intensity decreases with distance

store in a lead box (immediately) when not in use to avoid unnecessary exposure to radiation

[or any sensible precaution with reason]

(b)(ii) γ rays are more penetrating and are therefore more hazardous (to the internal organs of the body)

$$β$$
 particles are more hazardous because they are more ionising \checkmark
(\checkmark for any argued case for either radiation)
(10)

Unit 6: Section B

2 (a)	diagran	n to show:	rays refracted inwards at comea ✓ rays refracted inwards at lens ✓ rays focused at optic axis on retina ✓	_{max} (2)
(b)	only cones at fovea ✓ moving away from fovea, more rods, less cones ✓			(2)
(c)(i)	to control the intensity of light reaching retina 🗸			
(c)(ii)	forms a small pupil ✓			(2)
(d)(i)	accommodation: ability of the eye/lens to (change and) focus on different object distances ✓ [adjustment of the eye/lens to form a clearly focused image on the retina]			
(d)(ii)	changing the shape of the lens [or using the cillary muscles] ✓			(2) (8)
3 (a)	axes: time/ms, action potential/mV \checkmark time scale from $1 \rightarrow 5$ (approx) \checkmark action potential scale $+20 \rightarrow -80$ or $+30 \rightarrow -70$ \checkmark			(3)
(b)	Na ⁺ ions move into cell ✓ pd rises (from -70 to 0) (or +30), called depolarisation ✓ K ⁺ ions move out of nerve ✓ pd returns/falls to -70/resting potential, called repolarisation ✓ Na ⁺ moving from 0 to +30 called reverse polarisation ✓ to restore starting equilibrium of ions, the Na/K pump operates ✓			max(3) (6)
4 (a)	A	transfers vibrat	mpanic membrane ✓ tion of sound waves into mechanical oscillations ✓	
	B ossicles ✓ system of levers to multiply the force ✓ [or system of levers to link outer and inner ear]			
	C	cochlea ✓ converts pressu	ure wave in fluid into electrical signal ✓	(6)

(b) (use of intensity level =
$$10 \log \frac{I}{I_0}$$
 gives) $42 = 10 \log \frac{I}{1.0 \times 10^{-12}}$ \checkmark
 $I = 1.6 \times 10^{-8} \text{ W m}^{-2} \checkmark$ (2)

(a)(i) method 1: increasing pd across the tube \checkmark method 2: increasing tube current or increasing filament temperature \checkmark

(a)(ii) method 1: will increase the maximum photon energy \checkmark method 2: will not change the maximum photon energy \checkmark method 2: will not change the maximum photon energy \checkmark hardly changes intensity of low energy photons \checkmark hardly changes intensity of high energy photons \checkmark need high energy for picture [or low energy no good for picture] \checkmark reducing low energy reduces dose received by patient \checkmark $\frac{(3)}{(6)}$ Quality of Written Communication $(Q1(c)(i) \text{ and } Q3(b)) \checkmark\checkmark$ (2)