

A/AS 6683 STRICTLY CONFIDENTIAL

EDEXCEL

GENERAL CERTIFICATE OF EDUCATION

Advanced Subsidiary/Advanced Level

Statistics S1

MARKING SCHEME

January 2005

Principal Examiner:

Mr A Clegg 523 Manchester Road Bury Lancashire BL9 9SH Tel.: 0161 280 5226

Marking should be completed by 16 February 2005.

General Instructions

- 1. The total number of marks for the paper is 75.
- 2. Method (M) marks are awarded for 'knowing a method and attempting to apply it', unless otherwise indicated.
- 3. Accuracy (A) marks can only be awarded if the relevant method (M) marks have been earned.
- 4. (B) marks are independent of method marks.
- 5. Method marks should not be subdivided.
- 6. For misreading which does not alter the character of a question or materially simplify it, deduct two from any A or B marks gained, in that part of the question affected. Indicate this action by 'MR' in the body of the script (but see also note 10).
- 7. If a candidate makes more than one attempt at any question:
 - (a) If all but one attempt is crossed out, mark the attempt which is NOT crossed out.
 - (b) If either all attempts are crossed out or none are crossed out, mark all the attempts and score the highest single attempt.
- 8. Marks for each question, or part of a question, must appear in the right-hand margin and, in addition, total marks for each question, even where zero, must be ringed and appear in the right-hand margin and on the grid on the front of the answer book. It is important that a check is made to ensure that the totals in the right-hand margin of the ringed marks and of the unringed marks are equal. The total mark for the paper must be put on the top right-hand corner of the front cover of the answer book.
- 9. For methods of solution not in the mark scheme, allocate the available M and A marks in as closely equivalent a way as possible, and indicate this by the letters 'OS' (outside scheme) put alongside in the body of the script.
- 10. All A marks are 'correct answer only' (c.a.o.) unless shown, for example, as A1 f.t. to indicate that previous wrong working is to be followed through. In the body of the script the symbol $\sqrt{}$ should be used for correct f.t. and $\sqrt[4]{}$ for incorrect f.t. After a misread, however, the subsequent A marks affected are treated as A f.t., but manifestly absurd answers should never be awarded A marks.
- 11. Ignore wrong working or incorrect statements following a correct answer.

190 High Holborn London WC1V 7BH

January 2005

Advanced Subsidiary/Advanced Level

General Certificate of Education

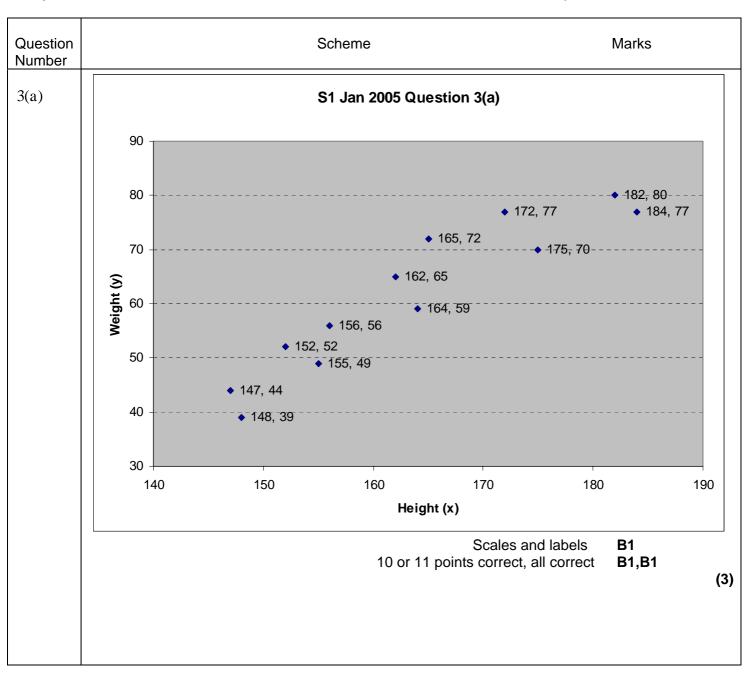
Question Number			Scheme			Marks	
1 (a)							
			0.03	Faulty			
	0.85	Goodbuy	0.97	Not faulty			
	0.15	Amort	0.06	Faulty			
		Amart	0.94	Not faulty	Tree 0.85,0.15 0.03,0.97,0.06,0.94	M1 A1 A1	(3)
(b)	P(Not faulty)	$= (0.85 \times 0.97)$ $= 0.9655$	7)+(0.15×0.94)	their	values, all correct awrt 0.966	M1,A1 A1	
						(Total 6 ma	(3) rks)

190 High Holborn London WC1V 7BH

January 2005

Advanced Subsidiary/Advanced Level

General Certificate of Education


Question Number	Scheme	Marks	
2 (a)	$Q_1 = 33, \ Q_2 = 41, \ Q_3 = 52$	B1B1B1	(3)
(b)	Rich WESt	AI AI HI HI HI	(3)
(c)	Median of Northcliffe is greater than median of Seaview. Upper quartiles are the same IQR of Northcliffe is less than IQR of Seaview Northcliffe positive skew, Seaview negative skew any 3 acceptable comments	B1B1B1	(6) (3)
(d)	On 75% of the nights that month both had no more than 52 caravans on site.	B1 B1 (Total 14 marl	(2) ks)

190 High Holborn London WC1V 7BH

January 2005

Advanced Subsidiary/Advanced Level

General Certificate of Education

190 High Holborn London WC1V 7BH

January 2005

Advanced Subsidiary/Advanced Level

General Certificate of Education

Question Number	Scheme	Marks
(b)	Positive; as x increases, y increases	B1;B1 (2)
(c)	$S_{xy} = 122783 - \frac{1962 \times 740}{12} = 1793$ use of form	ula, cao M1A1
(d)	$b = \frac{S_{xy}}{S_{xx}} = \frac{1793}{1745} = 1.027507$ division, 1.0	
(e)	$\overline{y} = \frac{740}{12} = 61\frac{2}{3}$ 61\frac{2}{3} or 61.	. (2) 6 or 61.7 B1
	$\overline{y} = \frac{740}{12} = 61\frac{2}{3}$ 61 $\frac{2}{3}$ or 61. $s = \sqrt{\frac{47746}{12} - \left(\frac{740}{12}\right)^2} = 13.26859$ use of formula including relationships of the second se	oot, 13.3 M1A1
(f)	35.7, 87.7	(3) B1B1 (2)
(g)	All values between 35.7 and 87.7 so could be normal. Reason rec	quired B1 (1) (Total 15 marks)

190 High Holborn London WC1V 7BH

January 2005

Advanced Subsidiary/Advanced Level

General Certificate of Education

Scheme	Marks
$k+2k+3k+4k+5k = 1$ $15k = 1$ $** k = \frac{1}{15} **$	$\sum P(X=x) = 1 \text{ M1}$
15	cso A1 (2)
$P(X < 4) = P(1) + P(2) + P(3) = \frac{1}{15} + \frac{2}{15} + \frac{3}{15}$	sum of 3 probabilities M1
J	$\frac{6}{15} \text{ or } \frac{2}{5} \text{ A1}$ (2)
$E(X) = 1 \times \frac{1}{15} + 2 \times \frac{2}{15} + 3 \times \frac{3}{15} + 4 \times \frac{4}{15} + 5 \times \frac{5}{15}$ $= \frac{11}{3}$	use of $\sum x P(X = x)$ M1 $\frac{55}{15}$ or $\frac{11}{3}$ or $3\frac{2}{3}$ or $3.\dot{6}$ or 3.67 A1
E(3X - 4) = 3E(X) - 4 = 11 - 4 $= 7$	3xtheirs-4 M1 A1
(OR $E(3X - 4) = -1 \times \frac{1}{15} + 2 \times \frac{2}{15} + 5 \times \frac{3}{15} + 8 \times \frac{4}{15} + 112$ $= 7$	$ \frac{5}{15} \qquad \qquad \sum (3x-4)kx \mathbf{M1} $ cao A1)
	(Total 8 marks)
	$k + 2k + 3k + 4k + 5k = 1$ $15k = 1$ $** k = \frac{1}{15} **$ $P(X < 4) = P(1) + P(2) + P(3) = \frac{1}{15} + \frac{2}{15} + \frac{3}{15}$ $= \frac{2}{5}$ $E(X) = 1 \times \frac{1}{15} + 2 \times \frac{2}{15} + 3 \times \frac{3}{15} + 4 \times \frac{4}{15} + 5 \times \frac{5}{15}$ $= \frac{11}{3}$ $E(3X - 4) = 3E(X) - 4 = 11 - 4$ $= 7$ (OR $E(3X - 4) = -1 \times \frac{1}{15} + 2 \times \frac{2}{15} + 5 \times \frac{3}{15} + 8 \times \frac{4}{15} + 11 \times \frac{3}{15}$

190 High Holborn London WC1V 7BH

January 2005

Advanced Subsidiary/Advanced Level

General Certificate of Education

Question Number	Scheme	Marks	
5 (a)	A 16 5 19 6 subtract 4,5 subtract 16,19,2 918	5,7 A1 ct A1 25 A1 8 B1	(6)
(b)	$P(\text{No defects}) = \frac{918}{1000} = 0.918$	B1	(4)
(c)	P(No more than 1)= $\frac{918+16+19+25}{1000}$ OR $1-\frac{5+6+4+7}{1000}$	M1	(1)
		978 A1	(2)
(d)	$P(B Only 1 \text{ defect}) = \frac{P(B \text{ and } 1 \text{ defect})}{P(1 \text{ defect})} = \frac{\frac{19}{1000}}{\frac{16+19+25}{1000}}$ conditional pr		,
	$= \frac{19}{60} \qquad \frac{19}{60} \text{ or } 0.31\dot{6} \text{ or } 0.3$	317 A1	
(e)	P(Both had type B)= $\frac{37}{1000} \times \frac{36}{999}$ theirs from B		(2)
	$=\frac{37}{27750} \text{ or } 0.001\dot{3} \text{ or } 0.00133$		(O)
		(Total 13 mark	(2) (s)

190 High Holborn London WC1V 7BH

January 2005

Advanced Subsidiary/Advanced Level

General Certificate of Education

Question Number	Scheme	Marks
6(a)	(Discrete) Uniform	B1 (1)
(b)	e.g.Tossing a fair dice / coin	B1 (1)
(c)	Useful in theory – allows problems to be modelled not necessarily true in practice	B1 B1
(d)	Carry out an experiment to establish probabilities	(2) B1 B1
		(2) (Total 6 marks)

190 High Holborn London WC1V 7BH

January 2005

Advanced Subsidiary/Advanced Level

General Certificate of Education

Question Number			cheme		Marks	
7 (a)	P(X < 70)	$= P(Z < \frac{70 - 79}{12})$	standardise	79, 12 or 79, 14	14 M1	
		= P(Z < -0.75) = 0.226	56	-0.75, 0.226	66 A1A1	(3)
(b)	P(64< <i>X</i> < 96)	$= P(\frac{64-79}{12} < Z < \frac{96-7}{12}$	79 standardis	e both, 79& 12 d	only M1	
		= P(-1.25 < Z < 1.42) = 0		2, 0.8166	A1,A1	
						(3)
]				
(c)	0.11,79	\wedge				
	0.",'/		2358			
	11/	0.6463	_			
	79-0	79 79+6	χ~N (79, 12²))		
			Shaded area i=	$\frac{1}{2}(1-0.6463)$	M1A1	
				3 =0.1179	A 1	
						(3)
(d)	$P(X \le 79 + b) =$	= 0.7642		0.7642	B1	
	$\Rightarrow \frac{b}{12} = 0.72$	standard	dise LHS = probability, al	l correct	M1A1	
	b = 8.64				A 1	(4)
						(4)
					(Total 13	marks)
					(Total 13	marks)