

Mark Scheme (Final) January 2008

GCE

GCE Mathematics (6683/01)

General Marking Guidance

• All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.

Jexcel

- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
- There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.
- All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme. Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.
- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- When examiners are in doubt regarding the application of the mark scheme to a candidate's response, the team leader must be consulted.
- Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.

edexcel

January 2008 6683 Statistics Mathematics Mark Scheme

Question Number	Scheme	Marks
1. (a) (b)	$r = \frac{10 \times 56076 - 773 \times 724}{\sqrt{(10 \times 60475 - 773^2)(10 \times 53122 - 724^2)}}$ o.e. r = 0.155357	B1, B1 M1 A1ft A1 B1g B1h
		(2) Total 7 marks
NB	$S_{xx} = 60475 - \frac{(773)^2}{10} = 722.1, S_{yy} = 53122 - \frac{(724)^2}{10} = 704.4, S_{xy} = 56076 - \frac{773 \times 724}{10} = 110.8$	
(a)	1^{st}B1 for $\sum x$ and 2^{nd}B1 for $\sum y$, should be seen or implied.	
(b)	 M1 for at least one correct attempt at one of S_{xx}, S_{yy} or S_{xy} and then using in the correct formula 1st A1ft for a fully correct expression. (ft their Σx and their Σy) or 3 correct expressions for S_{xx}, S_{xy}, and S_{yy} but possibly incorrect values for these placed correctly in <i>r</i>. 2nd A1 for awrt 0.155 	
	If $ r > 0.5$ they can score B1g in (b) for saying that it (skills test) is not a good guide to performance but B0h since a second acceptable comment about both tests is not possible. Give B1 for one correct line, B1B1 for any 2. If the only comment is the test(s) <u>are</u> a good guide: scores B0B0 If the only comment is the tests are not good: scores B1B0 (second line)	
	The third line is for a comment that suggests that the interview test is OK but the skills test is not since one is positive and the other is negative. Treat 1 st B1 as B1g and 2 nd as B1h	
	An answer of "no" alone scores B0B0	

Question Number		Scheme	Marks
2.			
(a)	mean	is $\frac{2757}{12}$, = 229.75 AWRT 230	M1, A1
	sd is	$\sqrt{\frac{724961}{12} - (229.75)^2} = 87.34045$ AWRT 87.3	M1, A1
		[Accept s = AWRT 91.2]	
(b)		ed list is: 125, 160, 169, 171, 175, 186, 210, 243, 250, 258, 390, 420 $\frac{1}{2}(186+210) = 198$	(4) B1
		(169+171) = 170	B1
		$\frac{1}{2}(250+258) = 254$	B1
(c)	-	$.5(Q_3 - Q_1) = 254 + 1.5(254 - 170), = 380$ Accept AWRT (370-392) ts <i>F</i> (420) and <i>B</i> (390) are outliers.	(3) M1, A1 B1ft B1ft (4)
(d)	$\frac{Q_1-2}{Q_3}$	$\frac{Q_2 + Q_3}{-Q_1} = \frac{170 - 2 \times 198 + 254}{254 - 170}, = 0.3$ AWRT 0.33	(4) M1, A1
	Positiv	ve skew.	A1ft
			(3) Total 14 marks
(a)	1 st M1	for using $\frac{\sum x}{n}$ with a credible numerator and $n = 12$.	
NB	2 nd M1	for using a correct formula, root required but can ft their mean Use of $s = \sqrt{8321.84} = 91.22$ is OK for M1A1 here. Answers only from a calculator in (a) can score full marks	
(b)	1 st B1	for median= 198 only, 2 nd B1 for lower quartile 3 rd B1 for upper quartile	
S.C.		Q_1 and Q_3 are incorrect but an ordered list (with ≥ 6 correctly placed) is seen ed then award B0B1 as a special case for these last two marks.	
(c)	M1 A1 1 st B1ft 2 nd B1ft	for a clear attempt using their quartiles in given formula, for any value in the range $370 - 392$ for any one correct decision about <i>B</i> or <i>F</i> - ft their limit in range (258, 420) for correct decision about both <i>F</i> and <i>B</i> - ft their limit in range (258, 420) If more points are given score B0 here for the second B mark. (Can score M0A0B1B1 here)	
(d)	M1 1 st A1 2 nd A1ft	for an attempt to use their figures in the correct formula – must be seen (≥ 2 correct substitutions) for AWRT 0.33 for positive skew. Follow through their value/sign of skewness. Ignore any further calculations. "positive correlation" scores A0	

3.												
		dth	1	1	4	2 6	3	5	3	12		M1
	Freq. Density 6 7 2 6 5.5 2 1.5 0.5 0.5 × 12 or 6 0.5 <td< td=""><th></th><th>A1</th></td<>										A1	
	Total area is $(1 \times 6) + (1 \times 7) + (4 \times 2) + -70$											
	Total area is $(1 \times 6) + (1 \times 7) + (4 \times 2) +, = 70$ $(90.5 - 78.5) \times \frac{1}{2} \times \frac{140}{\text{their } 70}$											
	(90.5	$(5-78.5) \times \frac{1}{2} \times$	$\frac{1}{\text{their 7}}$			M1						
	"70 seen anywhere" Number of runners is 12									ere"	B1 A1	
												(5) Total 5 marks
	1 st M1	for attemp				,	90.5 - 78	8.5)				
	1 st A1	[Maybe of for 0.5×1 of the bar	2 or 6 (1 above 7	may be 78.5 - 9	seen or 0.5.	the his		Must	be relat	ted to th	e area	
	2 nd M1	for attemp	oting are	ea of co	rrect ba	$\operatorname{tr} \times \frac{14}{\operatorname{their}}$	$\frac{0}{.70}$					
	B1 2 nd A1	for 70 see for correc	n anyw	here in	their w		10					
	Minii	mum workin	g requi	red is 2	$2 \times 0.5 \times$	12 whe	re the 2	2 shoul	d come	from $\frac{1}{7}$	$\frac{40}{10}$	
		are 90.5 - 78								/	0	
	Com	mon answer	is 0.5×	12=6	(this sco	ores M1	A1M0E	80A0)				
	If uns	sure send to	review	e.g. 2 ×	<0.5 ×	12=12 v	vithout	70 bein	ig seen			

4. (a)	$S_{\rm ry}$ =	$=1818.5 - \frac{41 \times 406}{2}, =153.9$	(could be seen in (b))	AWRT 154	M1, A1	
	, xy	$=1818.5 - \frac{41 \times 406}{10}, =153.9$ $=188 - \frac{41^{2}}{10} = 19.9$				
	$S_{xx} =$	$=188 - \frac{10}{10} = 19.9$	(could be seen in (b))		A1	(2)
(b)	$b = \frac{1}{2}$	$\frac{153.9}{19.9}$, = 7.733668		AWRT 7.73	M1, A1	(3)
(0)		1),)			ŕ	
		$40.6 - b \times 4.1 (= 8.89796)$ 8.89 + 7.73x			M1 A1	
						(4)
(c)	A ty	pical car will travel 7700 mile	es every year		B1ft	(1)
(d)	$x = \frac{1}{2}$	$5, y = 8.89 + 7.73 \times 5 (= 47.5 - 4)$	17.6)		M1	(I)
	So n	nileage predicted is	AWRT 48000		A1	
					Total 10 n	(2) nark
		Accept calculation	as for S_{xx} and S_{xy} in (a) or (b)			
(a)	M1	for correct attempt or expre	ession for either			
	$1^{\text{st}} A1$	for one correct				
	$2^{nd} A1$	for both correct				
(b)	Ignore	the epen marks for part (b)	they should be awarded as	per this scheme		
	1 st M1	for $\frac{\text{their } S_{xy}}{\text{their } S_{xx}}$				
	1 st A1 2 nd M1	for AWRT 7.73	ula for <i>a</i> (minus required). Ft	their <i>b</i>		
	2 111		but making one slip in sub.eg	_		
	$2^{nd} A1$	for correct equation with 2	dp accuracy.			
		Accept $a = 8.89$, and $b = 7$.73 even if not written as fina	ll equation.		
	Correct	answers only (from calc) sc	ore 4/4 if correct to 2dp or 3	3/4 if AWRT 2dp		
(c)	B1ft	for their $b \times 1000$ to at least	2 sf. Accept "7.7 thousand"	but value is needed	1	
(d)	M 1	for substituting $x = 5$ into t	heir final answer to (b).			
	A1	for AWRT 48000 (Accept	"48 thousands")			

6. (a)	200 or 200g	B1 (1)
(b)	P(190 < X < 210) = 0.6 or $P(X < 210) = 0.8$ or $P(X > 210) = 0.2$ or diagram (o.e.) Correct use of 0.8 or 0.2	(1) M1 A1
	$Z = (\pm) \frac{210 - 200}{\sigma}$	M1
	$\frac{10}{\sigma} = 0.8416$ 0.8416	B1
	$\sigma = 11.882129$ AWRT 11.9	A1
(c)	$P(X < 180) = P\left(Z < \frac{180 - 200}{\sigma}\right)$	(5) M1
	= P(Z < -1.6832) = 1-0.9535 = 0.0465 or AWRT 0.046	M1 A1 (3) Total 9 marks
(a)	"mean = 200g" is B0 but "median = 200" or just "200" alone is B1	
	Standardization in (b) and (c). They must use σ not σ^2 or $\sqrt{\sigma}$.	
(b)	1^{st} M1for a correct probability statement (as given or eg P(200 <x<210)=0.3 o.e.)<br=""></x<210)=0.3> or shaded diagram - must have values on z-axis and probability areas shown 1^{st} A1for correct use of 0.8 or $p = 0.2$. Need a correct probability statement. May be implied by a suitable value for z seen (e.g. $z = 0.84$) 2^{nd} M1for attempting to standardise. Values for x and μ used in formula. Don't need $z =$ for this M1 nor a z-value, just mark standardization. B1B1for $z = 0.8416$ (or better) [$z = 0.84$ usually just loses this mark in (a)] 2^{nd} A1for AWRT 11.9	
(c)	1^{st} M1for attempting to Standardise with 200 and their sd(>0) e.g. $(\pm) \frac{180-200}{\text{their }\sigma}$ 2^{nd} M1NB on epen this is an A mark ignore and treat it as 2^{nd} M1for 1 – a probability from tables provided compatible with their probability statement.A1for 0.0465 or AWRT 0.046 (Dependent on both Ms in part (c))	

7.(a)	$P(R=3 \cap B=0) = \frac{1}{4} \times \frac{1}{4}, = \frac{1}{16}$								(2)	
(b)		3	0	3	6	9				
		2	0	2	4	6				
		1	0	1	2	3	All 0s All 1,2,3s All 4,6,9s	B1 B1 B1		
		0	0	0	0	0			(3)	
		B R	0	1	2	3				
(c)	$a = \frac{7}{16}$	$b = c = d = \frac{1}{16}$						B1, B1 1	B1	
(d)	E(<i>T</i>)	$E(T) = \left(1 \times \frac{1}{16}\right) + \left(2 \times \frac{1}{8}\right) + \left(3 \times \frac{1}{8}\right) + \left(4 \times \frac{1}{16}\right) + \dots$								
		$= 2\frac{1}{4} \text{ or exact equivalent e.g. 2.25, } \frac{9}{4}$								
(e)	Var(T	$\operatorname{Var}(T) = \left(1^{2} \times \frac{1}{16}\right) + \left(2^{2} \times \frac{1}{8}\right) + \left(3^{2} \times \frac{1}{8}\right) + \left(4^{2} \times \frac{1}{16}\right) + \dots - \left(\frac{9}{4}\right)^{2}$								
		$=\frac{49}{4}-\frac{81}{16}=7\frac{4}{10}$	$\frac{11}{6}$ or $\frac{11}{16}$	$\frac{5}{5}$ (o.e	2.)		AWRT 7.19	A1 Total 14	(4) marks	
(a) (c)	M1 1 st B1	for $\frac{1}{4} \times \frac{1}{4}$ for $\frac{7}{16}$,								
(d)	2 nd B1 M1									
(e)	1 st M1									
	1 st A1	1 st A1 for $\frac{49}{4}$ (o.e.) or a fully correct expression (all non-zero terms must be seen)								
	2 nd M1 2 nd A1	2^{nd} M1 for subtracting their $[E(T)]^2$, Must be some attempt to square $-\frac{9}{4}$ is M0 but $-\frac{2}{10}$								