

Mark Scheme (Final) \$1 (6683) January 2009

GCE

GCE Mathematics (6683/01)

General Marking Guidance

- All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.
- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
- There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.
- All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme. Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.
- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- When examiners are in doubt regarding the application of the mark scheme to a candidate's response, the team leader must be consulted.
- Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.
- If more than one response is seen and the candidate has not indicated which response they wish to submit then send the item to your Team Leader.

January 2009 6683 Statistics Mathematics Mark Scheme

Question Number	Scheme	Marks		
1. (a)	$S_{xx} = 57.22 - \frac{(21.4)^2}{10} = 11.424$ $S_{xy} = 313.7 - \frac{21.4 \times 96}{10} = 108.26$	M1 A1		
(4)	$S_{xy} = 313.7 - \frac{21.4 \times 96}{10} = 108.26$	A1 (3)		
(b)	$b = \frac{S_{xy}}{S_{xx}} = 9.4765$	M1 A1		
	$a = \overline{y} - b\overline{x} = 9.6 - 2.14b = (-10.679)$ y = -10.7 + 9.48x	M1 A1 (4)		
(c)	Every (extra) <u>hour</u> spent using the programme produces about <u>9.5 marks</u> <u>improvement</u>	B1ft (1)		
(d)	$y = -10.7 + 9.48 \times 3.3 = 20.6$ awrt 21	M1,A1 (2)		
(e)	Model may not be valid since [8h is] outside the range [0.5 - 4].	B1 (1) Total 11 marks		
(a)	M1 for a correct expression			
	1^{st} A1 for AWRT 11.4 for S_{xx}			
	2 nd A1 for AWRT 108 for S _{xy}	·		
(b)	Correct answers only: One value correct scores M1 and appropriate A1, both of	confect WITATAT		
(b) 1 st M1 for using their values in correct formula				
	1 st A1 for AWRT 9.5 2 nd M1 for correct method for <i>a</i> (minus sign required)			
	2^{nd} A1 for equation with a and b AWRT 3 sf (e.g. $y = -10.68 + 9.48x$ is fine)			
(c)	B1ft for comment conveying the idea of <u>b marks per hour</u> . Must mention value of b but can ft their value of b. No need to mention "extra" but must mention "marks" and "hour(s)" e.g. " 9.5 times per hour" scores B0			
(d)	M1 for sub $x = 3.3$ into their regression equation from the end of part (b) A1 for awrt 21			
(e)	B1 for a statement that says or implies that it may <u>not</u> be valid because <u>outside the range</u> . They do not have to mention the values concerned here namely 8 h or 0.5 - 4			

		T	
Question Number	Scheme	Marks	
2. (a)	E = take regular exercise B = always eat breakfast $P(E \cap B) = P(E \mid B) \times P(B)$	M1	
	$=\frac{9}{25} \times \frac{2}{3} = 0.24$ or $\frac{6}{25}$ or $\frac{18}{75}$	A1 (2)	
(b)	$P(E \cup B) = \frac{2}{3} + \frac{2}{5} - \frac{6}{25} \text{or} P(E' \mid B') \text{or} P(B' \cap E) \text{or} P(B \cap E')$ $= \frac{62}{75} \qquad = \frac{13}{25} \qquad = \frac{12}{75} \qquad = \frac{32}{75}$ $P(E' \cap B') = 1 - P(E \cup B) = \frac{13}{75} \text{or} 0.173$	M1	
	$= \frac{62}{75} \qquad = \frac{13}{25} \qquad = \frac{12}{75} \qquad = \frac{32}{75}$	A1	
		M1 A1 (4)	
(c)	$P(E \mid B) = 0.36 \neq 0.40 = P(E)$ or $P(E \cap B) = \frac{6}{25} \neq \frac{2}{5} \times \frac{2}{3} = P(E) \times P(B)$ So E and B are <u>not</u> statistically independent	M1 A1 (2) Total 8 marks	
(a)	M1 for $\frac{9}{25} \times \frac{2}{3}$ or $P(E B) \times P(B)$ and at least one correct value seen. A1 for 0.24 or exact equiv.		
	NB $\frac{2}{5} \times \frac{2}{3}$ alone or $\frac{2}{5} \times \frac{9}{25}$ alone scores M0A0. Correct answer scores full r	narks.	
(b)	1 st M1 for use of the addition rule. Must have 3 terms and some values, can ft their (a) Or a full method for $P(E' B')$ requires $1 - P(E B')$ and equation for $P(E B')$: (a) $+\frac{x}{3} = \frac{2}{5}$ Or a full method for $P(B' \cap E)$ or $P(B \cap E')$ [or other valid method] 2 nd M1 for a method leading to answer e.g. $1 - P(E \cup B)$ Or $P(B') \times P(E' B')$ or $P(B') - P(B' \cap E)$ or $P(E') - P(B \cap E')$		
	Venn Diagram 1 st M1 for diagram with attempt at $\frac{2}{5} - P(B \cap E)$ or $\frac{2}{3} - P(B \cap E)$. Can ft their (a)		
	1 st A1 for a correct first probability as listed or 32, 18 and 12 on Venn Diagram 2 nd M1 for attempting 75 - their (18 +32 + 12)		
(c)	M1 for identifying suitable values to test for independence e.g. $P(E) = 0.40$ and $P(E B) = 0.36$ Or $P(E) \times P(B) =$ and $P(E \cap B) = \text{their}$ (a) [but their (a) $\neq \frac{2}{5} \times \frac{2}{3}$]. Values seen somewhere		
	A1 for correct values and a correct comment		
	<u>Diagrams</u> You may see these or find these useful for identifying probabilities.		
	$N=75$ $N=75$ Common Errors (a) $\frac{9}{25}$ is MOA0		
	(b) $P(EUB) = \frac{53}{75}$ sc $1 - P(E \cup B) = \frac{22}{75}$ s		
	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		

Question Number		Scheme			Marks	
3. (8		$E(X) = 0 \times 0.4 + 1 \times 0.3 + + 3 \times 0.1, = 1$			M1, A1 (2)	
(ł	F(1.5) = [$F(1.5) = [P(X \le 1.5) =] P(X \le 1), = 0.4 + 0.3 = 0.7$			M1, A1 (2)	
(0	$E(X^2) = 0$	$E(X^2) = 0^2 \times 0.4 + 1^2 \times 0.3 + + 3^2 \times 0.1$, = 2			M1, A1	
	Var(X) =	$2-1^2$, = 1	(*)		M1, A1cso (4)	
(0	Var(5-3.5)	$Var(5-3X) = (-3)^2 Var(X), = 9$			M1, A1 (2)	
(6	e)	Total	Cases	Probability]	
			$(X=3)\cap(X=1)$	$0.1 \times 0.3 = 0.03$		
		4	$(X=1)\cap(X=3)$	$0.3 \times 0.1 = 0.03$		
			$(X=2)\cap(X=2)$	$0.2 \times 0.2 = 0.04$	B1B1B1	
		5	$(X=3)\cap(X=2)$	$0.1 \times 0.2 = 0.02$		
			$(X=2)\cap(X=3)$	$0.2 \times 0.1 = 0.02$	M1	
		6	$(X=3)\cap(X=3)$	$0.1 \times 0.1 = 0.01$] A1	
	Total prob	10th probability = 0.03 + 0.03 + 0.02 + 0.02 + 0.01 = 0.13			A1 (6) Total 16 marks	
(8	a) M1 for	at least 3 terms	seen. Correct answer	only scores M1A1. Div	viding by $k(\neq 1)$ is M0.	
(ł	o) M1 for	M1 for $F(1.5) = P(X \le 1)$.[Beware : $2 \times 0.2 + 3 \times 0.1 = 0.7$ but scores M0A0]				
(0	(1) 1^{st} M1 for	at least 2 non-ze	ero terms seen. $E(X^2)$	= 2 alone is M0. Condo	one calling $E(X^2) = Var(X)$.	
			2 or a fully correct exp			
ALT	2 nd M1 for	$r - \mu^2$, condone 2	2-1, unless clearly 2	- μ . Allow $2-\mu^2$, with	$\mu = 1$ even if $E(X) \neq 1$	
			solution with no incorr	ect working seen, both	Ms required.	
	$\sum (x-\mu)$	$\sum (x - \mu)^2 \times P(X = x)$				
			full list of $(x-\mu)^2$ va	lues and probabilities.	1 st A1 if all correct	
	1^{st} M1 for an attempt at a full list of $(x-\mu)^2$ values and probabilities. 1^{st} A1 if all correct 2^{nd} M1 for at least 2 non-zero terms of $(x-\mu)^2 \times P(X=x)$ seen. 2^{nd} A1 for $0.4 + 0.2 + 0.4 = 1$					
	\angle W11 for at least \angle non-zero terms of $(x - \mu) \times P(x = x)$ seen. \angle A1 for $0.4 + 0.2 + 0.4 = 1$					
(0	/	M1 for use of the correct formula. $-3^2 \text{Var}(X)$ is M0 unless the final answer is >0. Can follow through their $\text{Var}(X)$ for M1				
(6	(e) 1st B1 for all cases listed for a total of 4 or 5 or 6 . e.g. (2,2) counted twice for a total of 4 is E 2nd B1 for all cases listed for 2 totals					
ALT ALT 3 rd B1 for a complete list of all 6 cases These may be highlighted in a table			ted in a table			
	Using Cumulative probabilities $1^{st} B1$ for one or more cumulative probabilities used e.g.2 then 2 or more or 3 then 1 or more $2^{nd} B1$ for both cumulative probabilities used. $3^{rd} B1$ for a complete list 1, 3; 2, \geq 2; 3, \geq 1 M1 for one correct pair of correct probabilities multiplied $1^{st} A1$ for all 6 correct probabilities listed (0.03, 0.03, 0.04, 0.02, 0.02, 0.01) needn't be added. $2^{nd} A1$ for 0.15 or exact equivalent only as the final answer.			2.1		
				ore or 3 then 1 or more st 1 $3 \cdot 2 > 2 \cdot 3 > 1$		

Question Number	Scheme	Marks	
4. (a)	$Q_2 = 53$, $Q_1 = 35$, $Q_3 = 60$	B1, B1, B1 (3)	
(b)	$Q_3 - Q_1 = 25 \Rightarrow Q_1 - 1.5 \times 25 = -2.5$ (no outlier)	M1	
	$Q_3 + 1.5 \times 25 = 97.5$ (so 110 is an outlier)	A1 (2)	
(c)		M1	
	0 10 20 30 40 50 60 70 80 90 100 10 120	A1ft	
	yminutes	A1ft (3)	
(d)	$\sum y = 461, \sum y^2 = 24 \ 219 :. \ S_{yy} = 24219 - \frac{461^2}{10} \ , = 2966.9 \ (*)$	B1, B1, B1cso (3)	
(e)	$r = \frac{-18.3}{\sqrt{3463.6 \times 2966.9}}$ or $\frac{-18.3}{3205.64} = -0.0057$ AWRT - 0.006 or -6×10 ⁻³	M1 A1 (2)	
(f)	r suggests correlation is close to zero so parent's claim is not justified	B1 (1) Total 14 marks	
(a)	1 st B1 for median 2 nd B1 for lower quartile 3 rd B1 for upper quartile		
(b)	M1 for attempt to find one limit A1 for both limits found and correct. No explicit comment about outlie	rs needed.	
(c)	M1 for a box and two whiskers 1 st A1ft for correct position of box, median and quartiles. Follow through their values. 2 nd A1ft for 17 and 77 or "their" 97.5 and *. If 110 is not an outlier then score A0 here. Penalise no gap between end of whisker and outlier. Must label outlier, needn't be with *. Accuracy should be within the correct square so 97 or 98 will do for 97.5		
(d)	1 st B1 for $\sum y$ N.B. $(\sum y)^2 = 212521$ and can imply this mark		
	2^{nd} B1 for $\sum y^2$ or at least three correct terms of $\sum (y - \overline{y})^2$ seen.		
	3^{rd} B1 for complete correct expression seen leading to 2966.9. So all 10 terms of $\sum (y - \overline{y})^2$		
(e)	M1 for attempt at correct expression for r . Can ft their S_{yy} for M1.		
(f)	B1 for comment rejecting parent's claim on basis of weak or zero correlation Typical error is "negative correlation so comment is true" which scores B0 Weak negative or weak positive correlation is OK as the basis for their rejection.		

<u>edexcel</u>

Question Number	Scheme	Marks	
5. (a)	8-10 hours: width = 10.5 - 7.5 = 3 represented by 1.5cm 16-25 hours: width = 25.5 - 15.5 = 10 so represented by 5 cm 8- 10 hours: height = fd = 18/3 = 6 represented by 3 cm 16-25 hours: height = fd = 15/10 = 1.5 represented by <u>0.75 cm</u>	B1 M1 A1 (3)	
(b)	$Q_2 = 7.5 + \frac{(52 - 36)}{18} \times 3 = 10.2$	M1 A1	
	$Q_1 = 5.5 + \frac{(26-20)}{16} \times 2[=6.25 \text{ or } 6.3] \text{ or } 5.5 + \frac{(26.25-20)}{16} \times 2[=6.3]$	A1	
	$Q_3 = 10.5 + \frac{(78 - 54)}{25} \times 5 = 15.3$ or $10.5 + \frac{(78.75 - 54)}{25} \times 5 = 15.45 \setminus 15.5$ $IQR = (15.3 - 6.3) = 9$	A1 A1ft (5)	
(c)	$\sum fx = 1333.5 \Rightarrow \overline{x} = \frac{1333.5}{104} = $ $\sum fx^2 = 27254 \Rightarrow \sigma_x = \sqrt{\frac{27254}{104} - \overline{x}^2} = \sqrt{262.05 - \overline{x}^2} $ AWRT <u>12.8</u> $O(x) = 0.5 \times 1.1 \times O(x) = 0.5 \times 1.2 \times $	M1 A1	
	$\sum fx^2 = 27254 \Rightarrow \sigma_x = \sqrt{\frac{27254}{104} - \bar{x}^2} = \sqrt{262.05 - \bar{x}^2}$ AWRT <u>9.88</u>	M1 A1 (4)	
(d)	$Q_3 - Q_2 = 5.1 > Q_2 - Q_1 = 3.9$ or $Q_2 < \overline{x}$ So data is positively skew	B1ft dB1 (2)	
(e)	Use median and IQR, since data is skewed <u>or</u> not affected by extreme values or outliers	B1 B1 (2) Total 16 marks	
(a)	M1 For attempting both frequency densities $\frac{18}{3}$ (= 6) and $\frac{15}{10}$, and $\frac{15}{10} \times SF$, where $\frac{15}{10} \times SF$, we shall $\frac{15}{10} \times SF$, where $\frac{15}{10} \times SF$, we will $\frac{15}{10} \times SF$, where $\frac{15}{10} \times SF$, where $\frac{15}{10} \times SF$, we will $\frac{15}{10} \times SF$, where $\frac{15}{10} \times SF$, where $\frac{15}{10} \times SF$, where $\frac{15}{10} \times SF$, we will $\frac{15}{10} \times SF$, where $\frac{15}{10} \times SF$, where $\frac{15}{10} \times SF$, where $\frac{15}{10} $	here SF≠ 1	
	NB Wrong class widths (2 and 9) gives $\frac{h}{1.66} = \frac{3}{9} \rightarrow h = \frac{5}{9}$ or 0.55 and scores M1A0 for identifying correct interval and a correct fraction e.g. $\frac{\frac{1}{2}(104)-36}{18}$. Condone 52.5 or		
(b)			
	1^{st} A1 for 10.2 for median. Using $(n + 1)$ allow awrt 10.3 2^{nd} A1 for a correct expression for either Q_1 or Q_3 (allow 26.25 and 78.75) Must see some		
	3^{rd} A1 for correct expressions for both Q_1 and Q_3 4^{th} A1ft for IQR, ft their quartiles. Using $(n+1)$ gives 6.28 and 15.45	method	
(c)			
	1 st M1 for attempting $\sum_{x} fx$ and \overline{x}		
	2 nd M1 for attempting $\sum fx^2$ and σ_x , $\sqrt{\ }$ is needed for M1. Allow $s=a$	wrt 9.93	
(d)	1 st B1ft for suitable test, values need not be seen but statement must be compatible with values used. Follow through their values		
2 nd dB1 Dependent upon their test showing positive and for stating positive If their test shows negative skew they can score 1 st B1 but lose the			
(e)	1 st B1 for choosing median and IQR. Must mention <u>both</u> . Award inde 2 nd B1 for suitable reason		
	e.g. "use median because data is skewed" scores B0B1 since IQR is not r	пенионеа	

0 "			
Question Number	Scheme		Marks
6. (a)	$P(X < 39) = P\left(Z < \frac{39 - 30}{5}\right)$ $= P(Z < 1.8) = 0.9641$	(allow awrt 0.964)	M1 A1 (2)
(b)	$P(X < d) = P\left(Z < \frac{d - 30}{5}\right) = 0.1151$ $1 - 0.1151 = 0.8849$ $\Rightarrow z = -1.2$ $\therefore \frac{d - 30}{5} = -1.2$	(allow ± 1.2) $d = 24$	M1 B1 M1A1 (4)
(c)	$P(X > e) = 0.1151$ so $e = \mu + (\mu - \text{their } d)$ or	$\frac{e-30}{5} = 1.2 \text{ or - their } z$ $\underline{e=36}$	M1 A1 (2)
(d)	$P(d < X < e) = 1 - 2 \times 0.1151$ = 0.7698	AWRT <u>0.770</u>	M1 A1 (2) Total 10 marks
	Answer only scores all marks in each section BUT check (b) and (c) are in correct order		
(a)	M1 for standardising with σ , $z = \pm \frac{39-30}{5}$ is OK A1 for 0.9641 or awrt 0.964 but if they go on to calculate 1 – 0.9641 they get M1A0		
(b)	1 st M1 for attempting 1- 0.1151. Must be seen in (b) in connection with finding <i>d</i> B1 for $z = \pm 1.2$. They must state $z = \pm 1.2$ or imply it is a <i>z</i> value by its use. This mark is only available in part (b). 2 nd M1 for $\left(\frac{d-30}{5}\right)$ = their negative <i>z</i> value (or equivalent)		
(c)	M1 for a full method to find e . If they used $z = 1.2$ in (b) they can get M1 for $z = \pm 1.2$ here If they use symmetry about the mean $\mu + (\mu$ - their d) then ft their d for M1 Must explicitly see the method used unless the answer is correct.		
(d)	for a complete method or use of a correct expression e.g. "their 0.8849 " - 0.1151 or If their d < their e using their values with $P(X < e)$ - $P(X < d)$ If their $d \ge$ their e then they can only score from an argument like $1 - 2x0.1151$ A negative probability or probability > 1 for part (d) scores M0A0		