GCE Examinations Advanced Subsidiary / Advanced Level

Statistics Module S1

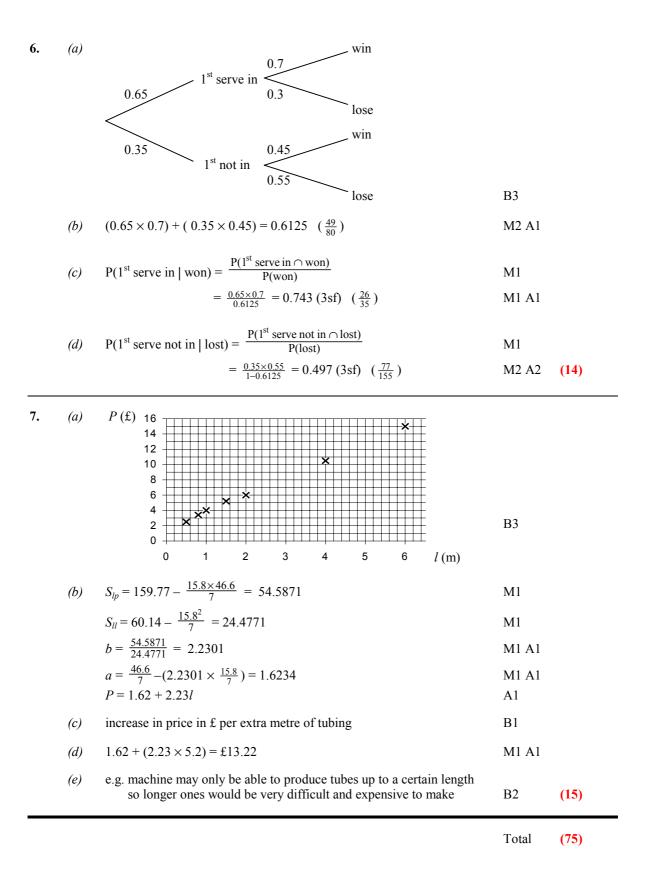
Paper G MARKING GUIDE

This guide is intended to be as helpful as possible to teachers by providing concise solutions and indicating how marks should be awarded. There are obviously alternative methods that would also gain full marks.

Method marks (M) are awarded for knowing and using a method.

Accuracy marks (A) can only be awarded when a correct method has been used.

(B) marks are independent of method marks.



Written by Shaun Armstrong & Chris Huffer © Solomon Press

These sheets may be copied for use solely by the purchaser's institute.

S1 Paper G – Marking Guide

1.	(a)	0.1 + 0.15 + 0.2 = 0.45	A1	
	(b)	0.2 + 0.3 = 0.5	M1 A1	
	(c)	$\sum y P(y) = (-0.2) + (-0.15) + 0 + 0.3 + 0.5 = 0.45$	M1 A1	
	(d)	3E(Y) - 1 = 0.35	M1 A1	(7)
2.	(a)	e.g. they earn less from regular hrs so need more to supplement income	B1	
	(b)	$S_{pp} = 420.58 - \frac{86^2}{18} = 9.69111$	M1	
		$S_{hh} = 830.25 - \frac{104.5^2}{18} = 223.569$	M1	
		$S_{ph} = 487.3 - \frac{86 \times 104.5}{18} = -11.9778$	M1	
		$r = \frac{-11.9778}{\sqrt{9.69111 \times 223.569}} = -0.2573$	M1 A1	
	(c)	weak -ve correlation gives some support to hypothesis	B2	(8)
3.	(a)	$\overline{y} = \frac{37}{80} = 0.4625$	M1	
		$\overline{C} = (250 \times 0.4625) + 3250 = \text{\pounds}3366 \text{ (nearest \pounds)}$	M1 A1	
		std. dev. of $y = \sqrt{\frac{2317}{80} - 0.4625^2} = 5.3618$	M1	
		std. dev. of $C = 250 \times 5.3618 = \text{\pounds}1340$ (nearest £)	M1 A1	
	<i>(b)</i>	used midpoints to represent data in each group	B1	
	(c)	median < mean \therefore +vely skewed e.g. most cost a similar amount but some people spend a lot more	B1 B1	(9)
4.	(a)	$P(Z < \frac{38.2 - 32.5}{\sqrt{18.6}}) = P(Z < 1.32) = 0.9066$	M2 A1	
	(b)	$P(\frac{31-32.5}{\sqrt{18.6}} < Z < \frac{35-32.5}{\sqrt{18.6}}) = P(-0.35 < Z < 0.58)$	M2	
		= P(Z < 0.58) - P(Z < -0.35)	M1	
		= 0.7190 - 0.3632 = 0.3558	A1	
	(c)	$P(Z > \frac{110 - \mu}{7.2}) = 0.138$	M1	
		$\frac{110-\mu}{7.2} = 1.09; \ \mu = 102 \ (3sf)$	M1 A2	(11)
5.	(a)	$\sum fx = 146$; mean = $\frac{146}{85} = 1.72$ (3sf)	M1 A1	
		$\sum f x^2 = 312$	M1	
		std. dev. = $\sqrt{\frac{312}{85} - (1.7176)^2} = 0.849$ (3sf)	M1 A1	
	<i>(b)</i>	$\sum P(x) = 19k + 16k + 11k + 4k = 50k = 1 \therefore \ k = \frac{1}{50}$	M2 A1	
	(c)	$\sum x P(x) = \frac{19}{50} + \frac{32}{50} + \frac{33}{50} + \frac{16}{50} = 2$	M1 A1	
	(d)	e.g. mean of model not very close : not very suitable	B1	(11)

Performance Record – S1 Paper G

Question no.	1	2	3	4	5	6	7	Total
Topic(s)	discrete r. v.	pmcc	mean + std. dev. with coding	normal dist.	mean, std. dev., modelling, discrete r. v.	probability	scatter diagram, regression	
Marks	7	8	9	11	11	14	15	75
Student								